Mathematicians are constantly constructing and exploring the properties of abstract objects only because they find them beautiful and interesting. Later, sometimes centuries later, the objects may turn out to be e-nor...Mathematicians are constantly constructing and exploring the properties of abstract objects only because they find them beautiful and interesting. Later, sometimes centuries later, the objects may turn out to be e-normously useful when they are applied to the physical world. There are no more elegant examples of this than the work done in ancient Greece on the four conic-section curve. If a right circular cone is sliced by a plane parallel to its base, the cross section is a circle. Tip the展开更多
The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit functions with the same (or higher) smoothness but smaller support. We present an algorithm to gen...The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit functions with the same (or higher) smoothness but smaller support. We present an algorithm to generate the 4-point n-ary non-stationary scheme for trigonometric, hyperbolic and polynomial case with the parameter for describing curves. The performance, analysis and comparison of the 4-point ternary scheme are also presented.展开更多
文摘Mathematicians are constantly constructing and exploring the properties of abstract objects only because they find them beautiful and interesting. Later, sometimes centuries later, the objects may turn out to be e-normously useful when they are applied to the physical world. There are no more elegant examples of this than the work done in ancient Greece on the four conic-section curve. If a right circular cone is sliced by a plane parallel to its base, the cross section is a circle. Tip the
文摘The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit functions with the same (or higher) smoothness but smaller support. We present an algorithm to generate the 4-point n-ary non-stationary scheme for trigonometric, hyperbolic and polynomial case with the parameter for describing curves. The performance, analysis and comparison of the 4-point ternary scheme are also presented.