ZE10 magnesium alloy sheets were prepared through ingot casting and the hot-rolling process. The mechanical properties, conical cup value (CCV), bore expanding performance, and limit drawing ratio (LDR) were inves...ZE10 magnesium alloy sheets were prepared through ingot casting and the hot-rolling process. The mechanical properties, conical cup value (CCV), bore expanding performance, and limit drawing ratio (LDR) were investigated to examine the stamping formability of ZE10 alloy sheets, at temperatures ranging from 20 to 300℃. The results showed that the tensile strength decreased, whereas, plasticity, drawing-bulging performance, bore expanding properties, and deep drawing performance increased markedly at elevated temperatures. The CCV specimens could be drawn into the conical die' s underside cylindrical hole from the conical cliff, without cracking, and could have the minimum CCV at 200 and 250 ℃ In the bore-expanding test, the bore (φ10 mm) could be expanded to the dimension of the punch (φ25 mm) and the maximum bore-expanding ratio could be achieved at above 150℃. The limiting drawing ratio (LDR) of 2.85 is acquired during the deep drawing test at 230 v with the punch temperature of 20 - 50℃, the punch velocity of 50 mm · min^-1, and the mixture of graphite and cylinder grease as lubricant.展开更多
Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment ...Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment was conducted at 300 ℃ in a die having an included angle of 90o between two channels by the BCZ route with the sheets rotated by 90°about the normal axis of plate plane. The tensile tests and conical cup tests were conducted at various temperatures from 20 to 250 ℃. The experimental results indicated that improving the working temperatures could lead to the soft in the material and the enhancement of ductility. Comparatively, the ECAPed AZ31 alloy sheets showed the lower yield strength and smaller conical cup value (CCV) than the unECAPed counterpart in the room temperature. The difference in yield strength between them became small in the elevated temperature, but the ECAPed samples still had the smaller CCV value, implying the improved formability. The texture of the AZ31 alloy sheets could be modified by ECAP and the decrease in the yield strength and more uniform deformation realized in the material, so the formability of AZ31 alloy sheets was improved.展开更多
基金Project supported by the Foundation (2005002) from Key Laboratory for Advanced Metallic Materials Processing and Forming of Guangdong Province
文摘ZE10 magnesium alloy sheets were prepared through ingot casting and the hot-rolling process. The mechanical properties, conical cup value (CCV), bore expanding performance, and limit drawing ratio (LDR) were investigated to examine the stamping formability of ZE10 alloy sheets, at temperatures ranging from 20 to 300℃. The results showed that the tensile strength decreased, whereas, plasticity, drawing-bulging performance, bore expanding properties, and deep drawing performance increased markedly at elevated temperatures. The CCV specimens could be drawn into the conical die' s underside cylindrical hole from the conical cliff, without cracking, and could have the minimum CCV at 200 and 250 ℃ In the bore-expanding test, the bore (φ10 mm) could be expanded to the dimension of the punch (φ25 mm) and the maximum bore-expanding ratio could be achieved at above 150℃. The limiting drawing ratio (LDR) of 2.85 is acquired during the deep drawing test at 230 v with the punch temperature of 20 - 50℃, the punch velocity of 50 mm · min^-1, and the mixture of graphite and cylinder grease as lubricant.
文摘Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment was conducted at 300 ℃ in a die having an included angle of 90o between two channels by the BCZ route with the sheets rotated by 90°about the normal axis of plate plane. The tensile tests and conical cup tests were conducted at various temperatures from 20 to 250 ℃. The experimental results indicated that improving the working temperatures could lead to the soft in the material and the enhancement of ductility. Comparatively, the ECAPed AZ31 alloy sheets showed the lower yield strength and smaller conical cup value (CCV) than the unECAPed counterpart in the room temperature. The difference in yield strength between them became small in the elevated temperature, but the ECAPed samples still had the smaller CCV value, implying the improved formability. The texture of the AZ31 alloy sheets could be modified by ECAP and the decrease in the yield strength and more uniform deformation realized in the material, so the formability of AZ31 alloy sheets was improved.