An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which ...An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.展开更多
The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by mea...The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.展开更多
基金supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.
文摘The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.