Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correc...Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure the frequency Taylor series method is used for designing a coning correction structure coefficient and then a new coning algorithm is obtained.Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments respectively.Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance compared to the traditional compressed coning algorithm.展开更多
Traditional coning algorithms are based on the first-order coning correction reference model.Usually they reduce the algorithm error of coning axis(z)by increasing the sample numbers in one iteration interval.But the ...Traditional coning algorithms are based on the first-order coning correction reference model.Usually they reduce the algorithm error of coning axis(z)by increasing the sample numbers in one iteration interval.But the increase of sample numbers requires the faster output rates of sensors.Therefore,the algorithms are often limited in practical use.Moreover,the noncommutivity error of rotation usually exists on all three axes and the increase of sample numbers has little positive effect on reducing the algorithm errors of orthogonal axes(x,y).Considering the errors of orthogonal axes cannot be neglected in the high-precision applications,a coning algorithm with an additional second-order coning correction term is developed to further improve the performance of coning algorithm.Compared with the traditional algorithms,the new second-order coning algorithm can effectively reduce the algorithm error without increasing the sample numbers.Theoretical analyses validate that in a coning environment with low frequency,the new algorithm has the better performance than the traditional time-series and frequency-series coning algorithms,while in a maneuver environment the new algorithm has the same order accuracy as the traditional time-series and frequency-series algorithms.Finally,the practical feasibility of the new coning algorithm is demonstrated by digital simulations and practical turntable tests.展开更多
To compensate the coning error of Strap-down Inertial Navigation Systems (SINS) under high dynamic angular motion, many rotation vector algorithms have been developed using angle increments information. However, most ...To compensate the coning error of Strap-down Inertial Navigation Systems (SINS) under high dynamic angular motion, many rotation vector algorithms have been developed using angle increments information. However, most SINS use angular rate gyros. Aimed at this problem, 18 algorithms are derived based on analysis of the conventional algorithms, and corresponding coning error expressions are given. At last simulation is made which indicates that the new algorithms have much higher precision.展开更多
A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorith...A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.展开更多
This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the ex...This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.展开更多
基金The National Natural Science Foundation of China(No.51375087)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110039)+2 种基金the Public Science and Technology Research Funds Projects of Ocean(No.201205035)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0097)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1349)
文摘Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure the frequency Taylor series method is used for designing a coning correction structure coefficient and then a new coning algorithm is obtained.Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments respectively.Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance compared to the traditional compressed coning algorithm.
基金Supported by the National Natural Science Foundation of China(61104188,91016019)the National Basic Research Program of China(2009CB724002)the Research Funding of Nanjing University of Aeronautics and Astronautics(NS2010084,NP2011049)
文摘Traditional coning algorithms are based on the first-order coning correction reference model.Usually they reduce the algorithm error of coning axis(z)by increasing the sample numbers in one iteration interval.But the increase of sample numbers requires the faster output rates of sensors.Therefore,the algorithms are often limited in practical use.Moreover,the noncommutivity error of rotation usually exists on all three axes and the increase of sample numbers has little positive effect on reducing the algorithm errors of orthogonal axes(x,y).Considering the errors of orthogonal axes cannot be neglected in the high-precision applications,a coning algorithm with an additional second-order coning correction term is developed to further improve the performance of coning algorithm.Compared with the traditional algorithms,the new second-order coning algorithm can effectively reduce the algorithm error without increasing the sample numbers.Theoretical analyses validate that in a coning environment with low frequency,the new algorithm has the better performance than the traditional time-series and frequency-series coning algorithms,while in a maneuver environment the new algorithm has the same order accuracy as the traditional time-series and frequency-series algorithms.Finally,the practical feasibility of the new coning algorithm is demonstrated by digital simulations and practical turntable tests.
文摘To compensate the coning error of Strap-down Inertial Navigation Systems (SINS) under high dynamic angular motion, many rotation vector algorithms have been developed using angle increments information. However, most SINS use angular rate gyros. Aimed at this problem, 18 algorithms are derived based on analysis of the conventional algorithms, and corresponding coning error expressions are given. At last simulation is made which indicates that the new algorithms have much higher precision.
基金the National Science Foundation(60574075, 60674108)
文摘A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.
文摘This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.