Let G be a finite group with the property that for any conjugacy class order, G has exactly two conjugacy classes which have the same order. We prove that: (1) ff a Sylow 2-subgroup of G is Abelian, then G is isomo...Let G be a finite group with the property that for any conjugacy class order, G has exactly two conjugacy classes which have the same order. We prove that: (1) ff a Sylow 2-subgroup of G is Abelian, then G is isomorphic to the direct product of symmetric group with order 3 and cyclic group with order 2, or G is isomorphic to the semidirect product of a cyclic group with order 3 and a cyclic group with order 4; (2) if G' is nilpotent, then G is a group of {2,3,5 }.展开更多
In 1986, G.X. Viennot introduced the theory of heaps of pieces as a visualization of Cartier and Foata’s “partially commutative monoids”. These are essentially labeled posets satisfying a few additional properties,...In 1986, G.X. Viennot introduced the theory of heaps of pieces as a visualization of Cartier and Foata’s “partially commutative monoids”. These are essentially labeled posets satisfying a few additional properties, and one natural setting where they arise is as models of reduced words in Coxeter groups. In this paper, we introduce a cyclic version of a heap, which loosely speaking, can be thought of as taking a heap and wrapping it into a cylinder. We call this object a toric heap, because we formalize it as a labeled toric poset, which is a cyclic version of an ordinary poset. Defining the category of toric heaps leads to the notion of certain morphisms such as toric extensions. We study toric heaps in Coxeter theory, because a cyclic shift of a reduced word is simply a conjugate by an initial or terminal generator. As such, we formalize and study a framework that we call cyclic reducibility in Coxeter theory, which is closely related to conjugacy. We introduce what it means for elements to be torically reduced, which is a stronger condition than simply being cyclically reduced. Along the way, we encounter a new class of elements that we call torically fully commutative (TFC), which are those that have a unique cyclic commutativity class, and comprise a strictly bigger class than the cyclically fully commutative (CFC) elements. We prove several cyclic analogues of results on fully commutative (FC) elements due to Stembridge. We conclude with how this framework fits into recent work in Coxeter groups, and we correct a minor flaw in a few recently published theorems.展开更多
基金The Natural Science Foundation ofChongqing Education Committee (No.KG051107)
文摘Let G be a finite group with the property that for any conjugacy class order, G has exactly two conjugacy classes which have the same order. We prove that: (1) ff a Sylow 2-subgroup of G is Abelian, then G is isomorphic to the direct product of symmetric group with order 3 and cyclic group with order 2, or G is isomorphic to the semidirect product of a cyclic group with order 3 and a cyclic group with order 4; (2) if G' is nilpotent, then G is a group of {2,3,5 }.
文摘In 1986, G.X. Viennot introduced the theory of heaps of pieces as a visualization of Cartier and Foata’s “partially commutative monoids”. These are essentially labeled posets satisfying a few additional properties, and one natural setting where they arise is as models of reduced words in Coxeter groups. In this paper, we introduce a cyclic version of a heap, which loosely speaking, can be thought of as taking a heap and wrapping it into a cylinder. We call this object a toric heap, because we formalize it as a labeled toric poset, which is a cyclic version of an ordinary poset. Defining the category of toric heaps leads to the notion of certain morphisms such as toric extensions. We study toric heaps in Coxeter theory, because a cyclic shift of a reduced word is simply a conjugate by an initial or terminal generator. As such, we formalize and study a framework that we call cyclic reducibility in Coxeter theory, which is closely related to conjugacy. We introduce what it means for elements to be torically reduced, which is a stronger condition than simply being cyclically reduced. Along the way, we encounter a new class of elements that we call torically fully commutative (TFC), which are those that have a unique cyclic commutativity class, and comprise a strictly bigger class than the cyclically fully commutative (CFC) elements. We prove several cyclic analogues of results on fully commutative (FC) elements due to Stembridge. We conclude with how this framework fits into recent work in Coxeter groups, and we correct a minor flaw in a few recently published theorems.