期刊文献+
共找到2,182篇文章
< 1 2 110 >
每页显示 20 50 100
An Adaptive Spectral Conjugate Gradient Method with Restart Strategy
1
作者 Zhou Jincheng Jiang Meixuan +2 位作者 Zhong Zining Wu Yanqiang Shao Hu 《数学理论与应用》 2024年第3期106-118,共13页
As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initiall... As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective. 展开更多
关键词 Unconstrained optimization Spectral conjugate gradient method Restart strategy Inexact line search Global convergence
下载PDF
H-CRAN中IRS辅助的D2D系统资源分配与RCG波束成形优化
2
作者 许晓荣 薛纪守 +1 位作者 吴俊 包建荣 《电信科学》 北大核心 2024年第7期76-87,共12页
以异构云无线电接入网(heterogeneous cloud radio access network,H-CRAN)中智能反射面(intelli‐gent reflecting surface,IRS)辅助的端到端(device-to-device,D2D)通信系统为背景,研究了该系统中以和速率最大化为目标的资源分配与黎... 以异构云无线电接入网(heterogeneous cloud radio access network,H-CRAN)中智能反射面(intelli‐gent reflecting surface,IRS)辅助的端到端(device-to-device,D2D)通信系统为背景,研究了该系统中以和速率最大化为目标的资源分配与黎曼共轭梯度(Riemannian conjugate gradient,RCG)波束成形优化方法。以最大化系统和速率为优化目标,构造子信道复用系数、发射功率门限以及IRS反射系数模约束等多约束优化问题。对于该非线性混合整数规划问题,提出了一种基于相对信道强度的延迟接受算法,以获得信道复用系数。随后将目标优化问题分解为两个子问题进行交替优化。对于发射功率优化子问题,使用逐次凸逼近(successive convex approximation,SCA)方法进行求解。对于IRS波束成形子问题,将IRS相移约束转化为复圆流形后,采用RCG算法进行求解。仿真结果表明,当IRS反射阵源数为50、基站最大发射功率为46 dBm时,与现有信道分配方案和随机信道分配方案相比,所提信道分配方案的和速率性能分别提高了5.2 bit/(s·Hz)和14.6 bit/(s·Hz)。与无IRS通信场景相比,部署IRS的和速率性能显著提高约31.2 bit/(s·Hz)。 展开更多
关键词 智能反射面 异构云无线电接入网 D2D通信 逐次凸逼近 黎曼共轭梯度
下载PDF
基于非结构网格的直流电法三维NLCG反演研究
3
作者 秦高升 肖晓 《工程地球物理学报》 2024年第3期473-483,共11页
直流电阻率法是矿产勘查、环境调查、工程勘察等领域应用广泛的地球物理勘探方法之一,目前反演方法仍以二维反演为主,而实际地电勘探目标体均为三维结构,二维反演容易受旁侧效应影响。基于上述问题,本文展开了三维电阻率反演研究,实现... 直流电阻率法是矿产勘查、环境调查、工程勘察等领域应用广泛的地球物理勘探方法之一,目前反演方法仍以二维反演为主,而实际地电勘探目标体均为三维结构,二维反演容易受旁侧效应影响。基于上述问题,本文展开了三维电阻率反演研究,实现了非结构化独立网格的三维非线性共轭梯度反演算法。非结构独立正反演网格既能适用于三维非平坦地形,可以实现网格的局部加密,又能克服正反演嵌套网格和同套网格的弊端;非线性共轭梯度法运用伴随原理不需要计算灵敏度矩阵,节约了计算资源和计算时间。程序对双立方体模型进行反演,经过100次迭代,misfit达到8%,反演重构异常体形态、位置与模型较为吻合,最后程序对某高速隧道塌陷区实测数据进行反演,通过与BERT2.0反演结果进行对比,证明了反演解释效果具有实际应用价值。 展开更多
关键词 电阻率法 三维非线性共轭梯度反演 正反演独立网格 非结构网格
下载PDF
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类
4
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(SSAE) 深度特征提取 缩放共轭梯度(Scg) 前馈神经网络(FFNN)
下载PDF
一类广义Sylvester矩阵方程组对称解的MCG算法
5
作者 陈世军 《通化师范学院学报》 2024年第4期15-22,共8页
该文建立了求解一类广义Sylvester矩阵方程组对称解的修正共轭梯度算法(MCG算法),给出了MCG算法的性质和收敛性证明,在忽略舍入误差情况下,建立的MCG算法能在有限步迭代后得到该方程组的对称解.选取特殊初始矩阵时,可求得该方程组的极... 该文建立了求解一类广义Sylvester矩阵方程组对称解的修正共轭梯度算法(MCG算法),给出了MCG算法的性质和收敛性证明,在忽略舍入误差情况下,建立的MCG算法能在有限步迭代后得到该方程组的对称解.选取特殊初始矩阵时,可求得该方程组的极小范数对称解.任意给定初始矩阵,可以在约束解矩阵集合中求出给定初始矩阵的最佳逼近矩阵.数值算例验证了所建立算法的可行性. 展开更多
关键词 广义Sylvester矩阵方程组 修正共轭梯度算法 对称解
下载PDF
Stochastic Finite Element Method for Mechanical Vibration Based on Conjugate Gradient(CG)
6
作者 MO Wen-hui 《International Journal of Plant Engineering and Management》 2008年第3期128-134,共7页
When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the comput... When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods. 展开更多
关键词 stochastic finite element method(SFEM) mechanical vibration conjugate gradientcg
下载PDF
Three-dimensional conjugate gradient inversion of magnetotelluric sounding data 被引量:4
7
作者 林昌洪 谭捍东 佟拓 《Applied Geophysics》 SCIE CSCD 2008年第4期314-321,共8页
Based on the analysis of the conjugate gradient algorithm, we implement a threedimensional (3D) conjugate gradient inversion algorithm with magnetotelluric impedance data. During the inversion process, the 3D conjug... Based on the analysis of the conjugate gradient algorithm, we implement a threedimensional (3D) conjugate gradient inversion algorithm with magnetotelluric impedance data. During the inversion process, the 3D conjugate gradient inversion algorithm doesn' t need to compute and store the Jacobian matrix but directly updates the model from the computation of the Jacobian matrix. Requiring only one forward and four pseudo-forward modeling applications per frequency to produce the model update at each iteration, this algorithm efficiently reduces the computation of the inversion. From a trial inversion with synthetic magnetotelluric data, the validity and stability of the 3D conjugate gradient inversion algorithm is verified. 展开更多
关键词 MAGNETOTELLURIC 3D INVERSION conjugate gradient
下载PDF
Blind Deconvolution Method Based on Precondition Conjugate Gradients 被引量:1
8
作者 朱振宇 裴江云 +2 位作者 吕小林 刘洪 李幼铭 《Petroleum Science》 SCIE CAS CSCD 2004年第3期37-40,共4页
In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is als... In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased. 展开更多
关键词 Blind deconvolution precondition conjugate gradients (Pcg) reflectivity series
下载PDF
Conjugate gradient and cross-correlation based least-square reverse time migration and its application 被引量:1
9
作者 孙小东 李振春 葛中慧 《Applied Geophysics》 SCIE CSCD 2017年第3期381-386,460,共7页
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain... Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized refleetivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality. 展开更多
关键词 Reverse time migration reflectivity Hessian matrix conjugate gradient
下载PDF
A New Class of Nonlinear Conjugate Gradient Methods with Global Convergence Properties 被引量:1
10
作者 陈忠 《长江大学学报(自科版)(上旬)》 CAS 2014年第3期I0001-I0003,共3页
非线性共轭梯度法由于其迭代简单和储存量小,且搜索方向不需要满足正割条件,在求解大规模无约束优化问题时占据及其重要的地位.提出了一类新的共轭梯度法,其搜索方向是目标函数的下降方向.若假设目标函数连续可微且梯度满足Lipschitz条... 非线性共轭梯度法由于其迭代简单和储存量小,且搜索方向不需要满足正割条件,在求解大规模无约束优化问题时占据及其重要的地位.提出了一类新的共轭梯度法,其搜索方向是目标函数的下降方向.若假设目标函数连续可微且梯度满足Lipschitz条件,线性搜索满足Wolfe原则,讨论了所设计算法的全局收敛性. 展开更多
关键词 摘要 编辑部 编辑工作 读者
下载PDF
基于SCG-BP神经网络的岩爆预测模型 被引量:1
11
作者 张亭 陈佳 +3 位作者 高志荣 任育荣 周义升 罗宏伟 《现代矿业》 CAS 2023年第6期159-162,共4页
标准的BP神经网络在岩爆预测中表现较差,选用量化共轭梯度法优化BP神经网络进行岩爆预测分类研究。选取应力系数、脆性系数和弹性能量指数为预测指标,以46组工程案例作为数据库,所建立的SCG-BP神经网络预测准确率达80.43%,远高于优化前... 标准的BP神经网络在岩爆预测中表现较差,选用量化共轭梯度法优化BP神经网络进行岩爆预测分类研究。选取应力系数、脆性系数和弹性能量指数为预测指标,以46组工程案例作为数据库,所建立的SCG-BP神经网络预测准确率达80.43%,远高于优化前的54.05%。对模型训练集与测试集的分类误差和分类结果进行可视化,并与标准BP神经网络的预测结果进行对比分析,结果表明优化效果良好。通过在实际工程中应用,表明该岩爆预测模型具有推广使用价值。 展开更多
关键词 岩爆预测 BP神经网络 量化共轭梯度法
下载PDF
NEW HYBRID CONJUGATE GRADIENT METHOD AS A CONVEX COMBINATION OF LS AND FR METHODS 被引量:6
12
作者 Sne?ana S.DJORDJEVI? 《Acta Mathematica Scientia》 SCIE CSCD 2019年第1期214-228,共15页
In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient me... In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient method. We also prove that the search direction of any hybrid conjugate gradient method, which is a convex combination of two conjugate gradient methods, satisfies the famous D-L conjugacy condition and in the same time accords with the Newton direction with the suitable condition. Furthermore, this property doesn't depend on any line search. Next, we also prove that, moduling the value of the parameter t,the Newton direction condition is equivalent to Dai-Liao conjugacy condition.The strong Wolfe line search conditions are used.The global convergence of this new method is proved.Numerical comparisons show that the present hybrid conjugate gradient algorithm is the efficient one. 展开更多
关键词 hybrid conjugate gradient method CONVEX combination Dai-Liao CONJUGACY condition NEWTON direction
下载PDF
ab initio CALCULATION FOR THE ELECTRONIC STRUCTURE OF GaAs/Al_xGa_(1-x) As SUPERLATTICES: CONJUGATE GRADIENT APPROACH
13
作者 金英进 姜恩永 +2 位作者 金光日 金成规 任世伟 《Transactions of Tianjin University》 EI CAS 2001年第2期98-100,共3页
The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is m... The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data. 展开更多
关键词 electronic structure SUPERLATTICE ab initio calculation conjugate gradient approach
下载PDF
A SUBSPACE PROJECTED CONJUGATE GRADIENT ALGORITHM FOR LARGE BOUND CONSTRAINED QUADRATIC PROGRAMMING 被引量:3
14
作者 倪勤 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1998年第1期51-60,共10页
A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active se... A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given. 展开更多
关键词 Projected search conjugate gradient method LARGE problem BOUND constrained quadraic programming.
下载PDF
Three-dimensional conjugate gradient inversion of magnetotelluric full information data 被引量:9
15
作者 Lin Chang-Hong Tan Han-Dong Tong Tuo 《Applied Geophysics》 SCIE CSCD 2011年第1期1-10,94,共11页
Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data... Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm. 展开更多
关键词 MAGNETOTELLURIC full information data 3D inversion conjugate gradient
下载PDF
Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data 被引量:9
16
作者 Wang Tai-Han Huang Da-Nian +2 位作者 Ma Guo-Qing Meng Zhao-Hai Li Ye 《Applied Geophysics》 SCIE CSCD 2017年第2期301-313,324,共14页
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin... With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data. 展开更多
关键词 Full Tensor Gravity Gradiometry (FTG) ICcg method conjugate gradient algorithm gravity-gradiometry data inversion CPU and GPU
下载PDF
Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization 被引量:4
17
作者 Ye Tian Haowen Chen +3 位作者 Haiping Ma Xingyi Zhang Kay Chen Tan Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1801-1817,共17页
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a... Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs. 展开更多
关键词 conjugate gradient differential evolution evolutionary computation large-scale multi-objective optimization mathematical programming
下载PDF
High-efciency improved symmetric successive over-relaxation preconditioned conjugate gradient method for solving large-scale finite element linear equations 被引量:1
18
作者 李根 唐春安 李连崇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1225-1236,共12页
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ... Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance. 展开更多
关键词 improved preconditioned conjugate gradient (Pcg method conjugate gradient method large-scale linear equation finite element method
下载PDF
A modified three–term conjugate gradient method with sufficient descent property 被引量:1
19
作者 Saman Babaie–Kafaki 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2015年第3期263-272,共10页
A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysi... A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysis, it is shown that search directions of the proposed method satisfy the sufficient descent condition, independent of the line search and the objective function convexity. Global convergence of the method is established under an Armijo–type line search condition. Numerical experiments show practical efficiency of the proposed method. 展开更多
关键词 unconstrained optimization conjugate gradient method EIGENVALUE sufficient descent condition global convergence
下载PDF
A Globally Convergent Polak-Ribiere-Polyak Conjugate Gradient Method with Armijo-Type Line Search 被引量:11
20
作者 Gaohang Yu Lutai Guan Zengxin Wei 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2006年第4期357-366,共10页
In this paper, we propose a globally convergent Polak-Ribiere-Polyak (PRP) conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and ... In this paper, we propose a globally convergent Polak-Ribiere-Polyak (PRP) conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and less demanding than those defined in [4,10]. A favorite property of this method is that we can choose the initial stepsize as the one-dimensional minimizer of a quadratic modelΦ(t):= f(xk)+tgkTdk+(1/2) t2dkTQkdk, where Qk is a positive definite matrix that carries some second order information of the objective function f. So, this line search may make the stepsize tk more easily accepted. Preliminary numerical results show that this method is efficient. 展开更多
关键词 非约束最优化 共轭梯度法 整体收敛 可微函数
下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部