With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin...With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.展开更多
The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochast...The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations.展开更多
The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the ...The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on.展开更多
This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and ut...This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and utilises the modified conjugate gradient method to perform sample-by-sample updating of the filter weights more efficiently. Simulation results illustrated that the proposed algorithm has the ability to provide a fast convergence speed and lower steady-error compared to that of traditional least mean square algorithm (LMSA), normalized transform domain least mean square algorithm (NT- LMSA), Quasi-Newton least mean square algorithm (Q-LMSA) and time domain conjugate gradient algorithm (TD-CGA) when the input signal is heavily coloured.展开更多
When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the comput...When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.展开更多
We extend a results presented by Y.F. Hu and C.Storey (1991) [1] on the global convergence result for conjugate gradient methods with different choices for the parameter β k . In this note, the condit...We extend a results presented by Y.F. Hu and C.Storey (1991) [1] on the global convergence result for conjugate gradient methods with different choices for the parameter β k . In this note, the conditions given on β k are milder than that used by Y.F. Hu and C. Storey.展开更多
Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lan...Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.展开更多
For resolving the problem that a conventional intensity modulated radiotherapy (IMRT) plan designed with the "two-step method"-creates a greater number of apertures and total Monitor Units (MU), the direct apert...For resolving the problem that a conventional intensity modulated radiotherapy (IMRT) plan designed with the "two-step method"-creates a greater number of apertures and total Monitor Units (MU), the direct aperture optimization (DAO) method using a genetic algorithm and conjugate gradient was studied based on Accurate/ Advanced Radiation Therapy System (ARTS) developed by the FDS Team (www.fds.org.cn).展开更多
The cuckoo search algorithm(CS)is improved by using the conjugate gradient method(CGM),and the CS-CGM is proposed.The unknown inner boundary shapes are generated randomly and evolved by Lévy flights and eliminati...The cuckoo search algorithm(CS)is improved by using the conjugate gradient method(CGM),and the CS-CGM is proposed.The unknown inner boundary shapes are generated randomly and evolved by Lévy flights and elimination mechanism in the CS and CS-CGM.The CS,CGM and CS-CGM are examined for the prediction of a pipe’s inner surface.The direct problem is two-dimensional transient heat conduction in functionally graded materials(FGMs).Firstly,the radial integration boundary element method(RIBEM)is applied to solve the direct problem.Then the three methods are compared to identify the pipe’s inner surface with the information of measured temperatures.Finally,the influences of timepoints,measurement point number and random noise on the inverse results are investigated.It is found that the three algorithms are promising and can be used to identify the pipe’s inner surface.The CS-CGM has higher accuracy and faster convergence speed than the CS and CGM.The CS and CS-CGM are insensitive to the initial values.The CGM and CS-CGM are more insensitive to the measurement noises compared with the CS.With the increase of timepoints and measurement points,and with the decrease of measurement noises,the inverse results are more accurate.展开更多
Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the p...Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural net-works (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright applica-tion prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This re-sulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q2pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds.展开更多
基金the Sub-project of National Science and Technology Major Project of China(No.2016ZX05027-002-003)the National Natural Science Foundation of China(No.41404089)+1 种基金the State Key Program of National Natural Science of China(No.41430322)the National Basic Research Program of China(973 Program)(No.2015CB45300)
文摘With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
基金National Natural Science Foundation of China(Nos.4156108241161061)。
文摘The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations.
基金supported by Hunan Education Office Foundation under Grant 06C260
文摘The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on.
文摘This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and utilises the modified conjugate gradient method to perform sample-by-sample updating of the filter weights more efficiently. Simulation results illustrated that the proposed algorithm has the ability to provide a fast convergence speed and lower steady-error compared to that of traditional least mean square algorithm (LMSA), normalized transform domain least mean square algorithm (NT- LMSA), Quasi-Newton least mean square algorithm (Q-LMSA) and time domain conjugate gradient algorithm (TD-CGA) when the input signal is heavily coloured.
文摘When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.
文摘We extend a results presented by Y.F. Hu and C.Storey (1991) [1] on the global convergence result for conjugate gradient methods with different choices for the parameter β k . In this note, the conditions given on β k are milder than that used by Y.F. Hu and C. Storey.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506003)
文摘Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.
基金These works were supported by a grant from the National Natural Science Foundation (No. 81101132).
文摘For resolving the problem that a conventional intensity modulated radiotherapy (IMRT) plan designed with the "two-step method"-creates a greater number of apertures and total Monitor Units (MU), the direct aperture optimization (DAO) method using a genetic algorithm and conjugate gradient was studied based on Accurate/ Advanced Radiation Therapy System (ARTS) developed by the FDS Team (www.fds.org.cn).
基金the National Natural Science Foundationof China(Nos.11672098,11502063)the Natural Science Foundation of Anhui Province(No.1608085QA07).
文摘The cuckoo search algorithm(CS)is improved by using the conjugate gradient method(CGM),and the CS-CGM is proposed.The unknown inner boundary shapes are generated randomly and evolved by Lévy flights and elimination mechanism in the CS and CS-CGM.The CS,CGM and CS-CGM are examined for the prediction of a pipe’s inner surface.The direct problem is two-dimensional transient heat conduction in functionally graded materials(FGMs).Firstly,the radial integration boundary element method(RIBEM)is applied to solve the direct problem.Then the three methods are compared to identify the pipe’s inner surface with the information of measured temperatures.Finally,the influences of timepoints,measurement point number and random noise on the inverse results are investigated.It is found that the three algorithms are promising and can be used to identify the pipe’s inner surface.The CS-CGM has higher accuracy and faster convergence speed than the CS and CGM.The CS and CS-CGM are insensitive to the initial values.The CGM and CS-CGM are more insensitive to the measurement noises compared with the CS.With the increase of timepoints and measurement points,and with the decrease of measurement noises,the inverse results are more accurate.
基金the National Natural Science Foundation of China (Grant No. 20507008)the National Natural Science Foundation Key Project of China (Grant No. 20737001)+1 种基金the Natural Science Foundation of Jiangsu Province,China (Grant No. BK200418)the National Basic Research Program of China (973 Program) (Grant No. 2003CB415002)
文摘Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural net-works (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright applica-tion prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This re-sulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q2pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds.