In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. W...A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.展开更多
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金supported by National Natural Science Foundation of China (Grant Nos. 91430108 and 11171251)the Major Program of Tianjin University of Finance and Economics (Grant No. ZD1302)
文摘A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.