期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Comprehensive Molten Salt Storage Shell and Supporting Structure Design and Analysis-Part I:A Conductive and Convective Theoretical Heat Transfer Analysis for Molten Salt Cylindrical Shells at 565℃ and 700℃ 被引量:2
1
作者 Nathan Loyd Samaan Ladkany William Culbreth 《Journal of Energy and Power Engineering》 2022年第2期33-51,共19页
In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ an... In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ and a futuristic 700℃,which substantially improves the efficiency of the molten salt containers through the use of a highly stable chloride salt called SS700(SaltStream 700).The theoretical analysis includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed theoretically using conductive heat transfer,however the area surrounding the soil surface around the bottom of the molten salt storage tank had convective heat transfer analysis included.The final designs presented in this paper seek to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃,which determines the thicknesses of the fiberglass and firebrick insulation. 展开更多
关键词 Molten salts storage tank design solar energy CONDUCTIVE CONVECTIVE heat transfer INSULATION theoretical analysis.
下载PDF
Investigation of convection cooling guide vane with conjugate heat transfer method
2
作者 陈凯 黄洪雁 +1 位作者 韩万金 冯国泰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第4期456-460,共5页
This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it wa... This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region. 展开更多
关键词 conjugate heat transfer air cooling turbine convection cooling numerical simulation
下载PDF
Comprehensive Molten Salt Storage Shell and Supporting Structure Design and Analysis-Part II:A Conductive and Convective Numerical Finite Element Heat Transfer Analysis for Molten Salt Cylindrical Shells at 700℃,and Comparison with Theoretical Analysis
3
作者 Nathan Loyd Samaan Ladkany William Culbreth 《Journal of Energy and Power Engineering》 2022年第2期52-70,共19页
In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700... In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The FEA(finite element analysis)includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed by finite element using conductive heat transfer,however the area surrounding the soil surface around the bottom of the MS storage tank had convective heat transfer analysis included.The finite elements analyses presented are to verify the final fiberglass and firebrick insulation designs,which seeks to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃.These results are also compared to previously calculated theoretical results. 展开更多
关键词 Molten salts storage tank design solar energy CONDUCTIVE CONVECTIVE heat transfer insulation finite element
下载PDF
SIMULATION OF STEEL COIL HEAT TRANSFER IN HPH FURNACE 被引量:3
4
作者 M. Y. Gu G. Chen +1 位作者 M. C. Zhang X. C. Dai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期647-652,共6页
The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity i... The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity is adopted by statistical analysis regression approach through the combination of a large quantity of production data collected in practice and theoretical analyses. The effect of the number of coils on circulating flow gas is considered for calculating the convection heat transfer coefficient, The temperature within the coil is predicted with the developed model during the annealing cycle including heating process and cooling process. The good consistently between the predicted results and the experimental data has demonstrated that the mathematical model established and the parameters identified by this paper are scientifically feasible and the effective method of calculation for coil equivalent radial heat transfer coefficient and circulating gas flow has been identified successfully, which largely enhances the operability and feasibility of the mathematic- model. This model provides a theoretical basis and an effective means to conduct studies on the impact that foresaid factors may imposed on the steel coil's temperature field, to analyze the stress within coils, to realize online control and optimal production and to increase facilily output by increasing heating and cooling rates of coils without producing higher thermal stress. 展开更多
关键词 FURNACE equivalent radial thermal conductivity convection heat transfer coefficient SIMULATION
下载PDF
Heat Generation Effects on MHD Natural Convection Flow along a Vertical Wavy Surface with Variable Thermal Conductivity 被引量:1
5
作者 Md Abdul Alim Md Rezaul Karim Md Miraj Akand 《American Journal of Computational Mathematics》 2012年第1期42-50,共9页
The heat generation effects on magnetohydrodynamic(MHD) natural convection flow along a vertical wavy surface with variable thermal conductivity have been investigated. The governing boundary layer equations are first... The heat generation effects on magnetohydrodynamic(MHD) natural convection flow along a vertical wavy surface with variable thermal conductivity have been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the stream lines as well as the isotherms are shown graphically for a selection of parameters set consisting of thermal conductivity variation parameter, heat generation parameter Q, magnetic parameter M and Prandtl number Pr. Comparison of numerical results of present work with other published data has been shown in table. 展开更多
关键词 NATURAL convection MAGNETOHYDRODYNAMICS heat transfer Wavy Surface Temperature Dependent Thermal CONDUCTIVITY heat Generation
下载PDF
Numerical simulation on conjugate heat transfer of turbine cascade
6
作者 周驰 颜培刚 +1 位作者 姜澎 冯国泰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期741-745,共5页
Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the tech... Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model. 展开更多
关键词 TURBINE conjugate heat transfer heat conduction numerical validation
下载PDF
Enhancement of Heat Transfer Using Pins Swimming in Non-isothermal Fluidic Systems: Exact Solutions
7
作者 Abdul Rahim A. Khaled 《Journal of Electronics Cooling and Thermal Control》 2011年第1期1-13,共13页
Heat transfer to pins swimming in non-isothermal fluidic systems is theoretically analyzed. Four different cases are considered: [A] pins aligned longitudinally in flowing fluid having constant temperature gradient, [... Heat transfer to pins swimming in non-isothermal fluidic systems is theoretically analyzed. Four different cases are considered: [A] pins aligned longitudinally in flowing fluid having constant temperature gradient, [B] pins aligned transversely in flowing fluid flow with constant temperature gradient, [C] pins moving longitudinally towards a heated surface, and [D] pins moving transversely towards the heated surface. The Appropriate unsteady energy transport equations are solved and closed form solutions for the fin temperatures are obtained. Accordingly, different performance indicators are calculated. It is found that heat transfer to the swimming fin increases as the fin thermal length, Peclet number and fluid temperature difference along the fin length increase. It decreases as fluid temperature index along the motion direction increases. Moreover, the swimming pins of case C are found to produce the maximum system effective thermal conductivity. In addition, pins of case B with thermal lengths above 11 produce system thermal conductivity independent on the thermal length. Meanwhile, pins of case A having thermal lengths above 10 produce system thermal conductivities less responsive to the thermal length. The system thermal conductivity is noticed to increase as the thermal length and Peclet number increase. Eventually, pins of case D produce system thermal conductivities that are independent on the transverse temperature. Finally, the results of this work provide a basis for modeling super convective fluidic systems that can be used in cooling of electronic components. 展开更多
关键词 conduction convection heat transfer enhancement MOVING pins.
下载PDF
Unified Solution of Conjugate Fluid and Solid Heat Transfer-Part I.Solid Heat Conduction
8
作者 Shujie Li Lili Ju 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第3期814-830,共17页
A unified solution framework is proposed for efficiently solving conjugate fluid and solid heat transfer problems.The unified solution is solely governed by the compressible Navier-Stokes(N-S)equations in both fluid a... A unified solution framework is proposed for efficiently solving conjugate fluid and solid heat transfer problems.The unified solution is solely governed by the compressible Navier-Stokes(N-S)equations in both fluid and solid domains.Such method not only provides the computational capability for solid heat transfer simulations with existing successful N-S flow solvers,but also can relax time-stepping restrictions often imposed by the interface conditions for conjugate fluid and solid heat transfer.This paper serves as Part I of the proposed unified solution framework and addresses the handling of solid heat conduction with the nondimensional N-S equations.Specially,a parallel,adaptive high-order discontinuous Galerkin unified solver has been developed and applied to solve solid heat transfer problems under various boundary conditions. 展开更多
关键词 Conjugate heat transfer solid heat conduction compressible Navier-Stokes exponential time integration discontinuous Galerkin
原文传递
基于Workbench的高压圆盘气体轴承共轭传热研究 被引量:1
9
作者 郭良斌 吴永良 《润滑与密封》 CAS CSCD 北大核心 2024年第1期15-23,共9页
高压圆盘气体轴承流道间隙内高速气流的对流换热与轴承圆盘内部热传导紧密耦合在一起,是一个典型的共轭传热问题。基于ANSYS Workbench工作平台的Fluid Flow(Fluent)模块对高压圆盘气体轴承进行共轭传热数值模拟,获得轴承流道间隙内的... 高压圆盘气体轴承流道间隙内高速气流的对流换热与轴承圆盘内部热传导紧密耦合在一起,是一个典型的共轭传热问题。基于ANSYS Workbench工作平台的Fluid Flow(Fluent)模块对高压圆盘气体轴承进行共轭传热数值模拟,获得轴承流道间隙内的速度和压力分布、流体域与固体域的温度分布以及共轭传热时流固耦合壁面的热流密度分布,并将其与非共轭传热恒温壁面条件下的计算结果进行对比,得到高压圆盘气体轴承共轭传热的一些基本特性。结果表明:2种情况下的计算结果存在较大差异,非共轭传热恒温壁面条件下,间隙内的气体只吸热,流体域耦合壁面上的热流密度均为正值;而共轭传热条件下流体域耦合壁面热流密度存在正负值,间隙内气体的吸热和放热同时存在,显示出轴承圆盘的热传导与间隙内气体的对流换热具有复杂的共轭作用机制;相比之下,采用共轭传热模型可以得到更为符合实际的结果。研究结果为该类轴承的设计和制造提供了有益的指导。 展开更多
关键词 高压圆盘气体轴承 共轭传热 对流换热 温度场 热流密度
下载PDF
顾及土壤热传导-对流效应的InSAR冻土活动层厚度估计
10
作者 杨沙 王琪洁 +1 位作者 李佳晨 张亚 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第7期2568-2581,共14页
冻土活动层厚度(Active Layer Thickness,ALT)的变化是反映青藏高原多年冻土发育情况及其状态的一个重要指标,监测活动层厚度变化对寒区景观稳定发展、碳循环等方面具有非常重要的意义.由于合成孔径雷达干涉测量(Interferometric Synthe... 冻土活动层厚度(Active Layer Thickness,ALT)的变化是反映青藏高原多年冻土发育情况及其状态的一个重要指标,监测活动层厚度变化对寒区景观稳定发展、碳循环等方面具有非常重要的意义.由于合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)技术具有大范围、高精度、高时空分辨率等优势,近年来逐渐被用于反演活动层厚度.已有研究中基于InSAR和土壤一维热传导模型的活动层厚度估计方法,没有充分考虑到冻土中土壤水分对流引起的热量传递.因此本文提出了基于InSAR时序形变及土壤热传导-对流模型的活动层厚度估计方法,利用土壤热传导-对流模型建立InSAR探测的最大融沉形变与最高地温之间的滞后时间与活动层厚度之间的相关关系,实现了由滞后时间直接推算大范围、高分辨率的冻土活动层厚度.本文以青藏高原五道梁多年冻土区为例,利用116景Sentinel-1影像图作为实验数据,估计了该地区2017—2020年的平均活动层厚度.结果表明,活动层厚度值范围为0~7.0 m,平均活动层厚度为3.06 m,与已有研究中相近时间段相关成果及观测数据结果一致.本文方法兼顾冻土水热过程,证明了土壤热传导-对流模型在冻土活动层厚度反演中具有良好的应用前景,可用于青藏高原其他偏远地区的高空间分辨率活动层厚度反演. 展开更多
关键词 冻土 土壤热传导-对流模型 青藏高原 活动层厚度 INSAR
下载PDF
电磁铁传热特性及散热优化的数值模拟
11
作者 李英杰 陈川 +3 位作者 张瑜 李强 司国雷 宋鹏 《重庆大学学报》 CAS CSCD 北大核心 2024年第5期24-36,共13页
电磁铁是电液控制系统的核心液压元件,被广泛应用于航空航天和石油工业等领域,但电磁铁工作产生的焦耳热和电磁损耗会导致温度迅速升高、局部热应力和不均匀膨胀变形,严重影响稳定性和使用寿命。笔者采用有限元软件研究电磁铁温度、应... 电磁铁是电液控制系统的核心液压元件,被广泛应用于航空航天和石油工业等领域,但电磁铁工作产生的焦耳热和电磁损耗会导致温度迅速升高、局部热应力和不均匀膨胀变形,严重影响稳定性和使用寿命。笔者采用有限元软件研究电磁铁温度、应力及变形的演化规律,分析导热套筒散热与强制对流散热对其热性能的影响规律。结果表明:随着线圈功率增大,电磁铁的最大温度、热应力和变形量均线性增大;随着套筒厚度增加,稳态的最大温度、变形量和导热量线性减小,温降幅度为12.5℃/mm;随着流速增加,最大温度、热应力和变形量显著减小,温降幅度45.5℃/(m·s^(-1)),说明增强导热和对流均能提高电磁铁热性能且对流更为显著。 展开更多
关键词 电磁铁 传热特性 导热与对流 数值模拟
下载PDF
Multi-domain physics-informed neural network for solving heat conduction and conjugate natural convection with discontinuity of temperature gradient on interface 被引量:1
12
作者 WANG TongSheng WANG ZhiHeng +1 位作者 HUANG Zhu XI Guang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第10期2442-2461,共20页
Deep learning has been increasingly recognized as a promising tool in solving kinds of physical problems beyond powerful approximations. A multi-domain physics-informed neural network(mPINN) is proposed to solve the n... Deep learning has been increasingly recognized as a promising tool in solving kinds of physical problems beyond powerful approximations. A multi-domain physics-informed neural network(mPINN) is proposed to solve the non-uniform heat conduction and conjugate natural convection with the discontinuity of temperature gradient on the interface. Local radial basis function method(LRBF) is applied to compute the case without the analytical solution and is regarded as the benchmark solver.Each physical domain matches a private neural network and all neural networks are connected by the shared information of temperature and heat flux on the interface. Joint training and separate training are utilized to minimize the loss function, which usually consists of the residual of boundary conditions, interface conditions and governing equations. Joint training minimizes the sum of all losses from neural networks with one shared optimizer, while separate training owns its private optimizer. Local adaptive activation function(LAAF) is used to accelerate the convergence and acquire a lower loss value when compared with its fixed counterpart. The numerical experiments on three types of residual points, uniform, Gauss-Lobatto and random, are conducted and it can be concluded that the uniform residual points can obtain the most accurate solution than the random and Gauss-Lobatto. Joint training is more accurate than the separate training when the number of residual points is relatively small,while the separate training performs better than the joint training for the large number of residual points. Numerous test cases on multi-domain heat transfer and fluid flow show the accuracy of the proposed m PINN. Local and global heat transfer rates show good agreements with the results from LRBF. Excepting the forward problems, the thermal conductivity ratio, the constant source and the characteristic parameters of natural convection are accurately learned from sparsely distributed data points. 展开更多
关键词 MULTI-DOMAIN physics-informed neural network heat conduction conjugate natural convection interface condition
原文传递
Augmenting the Heat Sink for Better Heat Dissipation
13
作者 Mohammed H. S. Al Ashry 《Circuits and Systems》 2015年第2期21-29,共9页
Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its bui... Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its buildup. Ventilation was not initially recognized as an essential factor to thermal dispersion. However, as electronic circuit-boards continued to heat up, circuit failure became a problem, forcing the inclusion of miniaturized high speed fans. Later, heat sinks with fins and quiet fans were incorporated in most manufactured circuits. Now heat sinks come in the form of a fan with fans made to function as fins to disperse heat. Heat sinks absorb and radiate excess heat from circuit-boards in order to prolong the circuit’s life span. The higher the thermal conductivity of the material used the more efficient and effective the heat sink is. This paper is an attempt to theoretically design a heat sink with a temperature gradient lower than that of the circuit board’s excess heat. 展开更多
关键词 CONVECTIVE heat transfer: heat Absorbed by the Natural AIR Flow Surrounding Hot Objects FORCED CONVECTIVE heat transfer: Absorption of heat Using FORCED AIR Flow Conductivity: Is the Ability of a System to Exchange or transfer Temperature within a Body or MATERIAL through the Movement of Electrons MATERIAL That Does Not Conduct heat Is Considered a Nonconductor
下载PDF
Second Law Analysis of Forced Convective Cooling in a Channel with a Heated Wall Mounted Obstacle
14
作者 Z. Kheirandish S. A. Gandjalikhan Nassab M. Vakilian 《Journal of Electronics Cooling and Thermal Control》 2013年第3期101-110,共10页
The present work details a numerical simulation of forced convective laminar flow in a channel with a heated obstacle attached to one wall. The second law analysis is employed to investigate the distribution of entrop... The present work details a numerical simulation of forced convective laminar flow in a channel with a heated obstacle attached to one wall. The second law analysis is employed to investigate the distribution of entropy generation in the flow domain to demonstrate the rate of irreversibilities in thermal system. The conjugate problem including the convection heat transfer in the fluid flow and conduction one inside the obstacle is solved numerically to obtain the velocity and temperature fields in both gas and solid phases. To reach this goal, the set of governing equations including momentum and energy equations for the gas phase and conduction equation for the obstacle are solved by CFD technique to determine the hydrodynamic and thermal behaviors of the fluid flow around the obstacle and the temperature distribution in the solid element. An attempt is made to detail the local Nusselt number distribution and mean Nusselt number and also the local entropy generation distribution for the individual exposed obstacle faces. A good consistency is found between the present numerical results with experiment. 展开更多
关键词 conjugated heat transfer OBSTACLE FORCED convection Flow ENTROPY Generation
下载PDF
带前缘冲击的一体化加力支板内外耦合传热数值研究
15
作者 韦裕恒 谭晓茗 +4 位作者 黄晓锋 李文 张靖周 邓远灏 单勇 《推进技术》 EI CAS CSCD 北大核心 2023年第5期142-155,共14页
以全气膜覆盖的一体化加力支板为研究对象,将冲击板布置于支板内腔中,研究气膜出流-前缘冲击复合冷却结构下一体化加力支板内外流气-固耦合传热特性。开展了不同主次流温比(2.24~2.76)、不同冲击间距(H/D=1,2.5,4)等参数对支板内外流动... 以全气膜覆盖的一体化加力支板为研究对象,将冲击板布置于支板内腔中,研究气膜出流-前缘冲击复合冷却结构下一体化加力支板内外流气-固耦合传热特性。开展了不同主次流温比(2.24~2.76)、不同冲击间距(H/D=1,2.5,4)等参数对支板内外流动特性、内外壁面对流换热系数分布和支板综合冷却效率的影响规律分析。研究结果表明:冲击板结构改变了支板腔内冷气流动及各排气膜孔流量分配,随着冲击间距的增大,冲击腔内对应气膜孔冷气量依次下降2.68%,3.80%,7.14%;此外,冲击板结构增强了支板前缘内外壁面对流换热,其中对内壁面对流换热的强化更为显著,前缘冲击滞止线处对流换热系数提升幅度依次为298.3%,354.5%,271.9%;冲击板的存在提高了壁温分布均匀性,而整体平均综合冷效随冲击间距的增大而增大,分别提升1.64%,2.26%,2.62%;随着主次流温比的增大,支板的综合冷效减小,但是下降的趋势逐渐减小;在主次流流量不变的情况下,随着冲击间距的增大,主次流压比减小,相比无冲击板模型,其变化幅度依次为0.395%,0.012%,-0.650%。 展开更多
关键词 一体化加力支板 气膜冷却 冲击冷却 对流换热 综合冷效 耦合传热
下载PDF
Al_(2)O_(3)-CuO/水混合纳米流体对流传热性能及热经济性分析 被引量:4
16
作者 郭文杰 翟玉玲 +2 位作者 陈文哲 申鑫 邢明 《化工进展》 EI CAS CSCD 北大核心 2023年第5期2315-2324,共10页
为了探究管内混合纳米流体单相对流传热性能,实验对比研究了雷诺数为1040~7086范围内体积分数为0.02%的Al_(2)O_(3)-CuO/水(W)混合纳米流体及其相应的一元纳米流体的流动与传热特性。结果表明,纳米颗粒的添加导致在过渡区雷诺数范围提前... 为了探究管内混合纳米流体单相对流传热性能,实验对比研究了雷诺数为1040~7086范围内体积分数为0.02%的Al_(2)O_(3)-CuO/水(W)混合纳米流体及其相应的一元纳米流体的流动与传热特性。结果表明,纳米颗粒的添加导致在过渡区雷诺数范围提前,在层流范围(1040<Re<1891)内,Al_(2)O_(3)/W和Al_(2)O_(3)-CuO/W纳米流体的Nu数与去离子水相比分别最大增加了32.09%和38.38%;而CuO/W纳米流体由于团聚体尺寸大,流体向前驱动力不足以克服自重易沉积于管内壁,传热效果反而比水差。在紊流范围(4073<Re<7806)内,受向前驱动力及流体分子自身旋转的作用,纳米流体的传热性能明显高于纯水,且混合纳米流体的综合传热性能最佳。综合考虑综合传热性能与经济性因素,在层流与紊流区内最适用于实际工业生产的纳米流体分别为Al_(2)O_(3)/W和Al_(2)O_(3)-CuO/W纳米流体。 展开更多
关键词 混合纳米流体 热传导 纳米粒子 对流 流动与传热特性 强化传热因子 热经济性分析
下载PDF
Conjugate Heat Transfer for Free Convection along a Vertical Plate Fin 被引量:2
17
作者 Kai-Long Hsiao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第4期337-345,共9页
In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection... In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection in the incompressible laminar boundary layer flow and heat conduction in a solid wall for the flow passing a flat plate fin. A combination of flat-plate flow and flat-plate fin heat conduction has been considered in the present study.Finite -difference solutions for the interface temperature profiles and the heat transfer rates have been presented over the entire thermo-fluid-dynamic field for Prandtl numbers from 0.001 to 10000.First,the similar flow field has been solved by the Runge-Kutta method and the shooting methods,then the correlation equation of the local heat transfer coefficient have been obtained.Finally,the empirical formula has been substituted into the fin temperature heat conduction calculation processes to obtain the iterative solutions of the conjugate problems. 展开更多
关键词 Conjugate heat transfer Free convection Vertical plate fin Finite difference Runge-Kutta method Shooting method.
原文传递
Theoretical and experimental advances on heat transfer and flow characteristics of metal foams 被引量:2
18
作者 WANG Hui GUO LieJin CHEN Kang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第5期705-718,共14页
Open cell metal foam can be applied to greatly improve thermal performance of heat sink and heat exchanger,so that it has been widely used in the fields of thermal(or heat)control system of aerospace vehicle and energ... Open cell metal foam can be applied to greatly improve thermal performance of heat sink and heat exchanger,so that it has been widely used in the fields of thermal(or heat)control system of aerospace vehicle and energy utilization system and become a very important topic for research in the aerospace thermophysics field,and more and more attentions have been attracted.The optimal design of metal foam heat transfer devices is based on the understanding the flow and heat transfer characteristics in metal foam.This article reviews some recent progresses of theoretical and experimental researches on heat transfer enhancement and flow characteristics of metal foam.We found that the pore cell simplification models of metal foams generally fall into four categories,among which the most commonly used cell model is Kelivin model.Some exploratory works performed by the current authors are also introduced,such as the effect of boundary conditions on the heat transfer enhancement;the theoretical modelling of interfacial convective heat transfer taking into account heat conduction between foam ligaments;and the flow characteristics under relatively high velocity.The analytical results show that the flow characteristics of metal foam at relatively high speed are completely different from those at low speed,a further thorough study of the heat transfer and flow characteristics of metal foam is necessarily required.In this paper,two types of partial filling techniques are discussed.The heat transfer performance of partially filled tubes was evaluated by both the performance evaluation criteria and the performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving.The results show that the filling type of metal foam have a significant impact on its heat transfer enhancement performance.Therefore,the filling method of metal foam should be further studied,in order to optimize the thermophysical properties of heat transfer devices. 展开更多
关键词 metal foam effective thermal conductivity interfacial convective heat transfer coefficient heat transfer enhancement thermal radiation
原文传递
An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow
19
作者 Thiago ANTONINI ALVES Paulo H. D. SANTOS Murilo A. BARBUR 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第3期263-276,共14页
In this research, the temperatures of three- dimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissip... In this research, the temperatures of three- dimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissipation in each heater by using a matrix G+ with invariant coefficients, which are dimensionless. These coefficients are defined in this study as the conjugate influence coefficients (g+) caused by the forced convec- tion-conduction nature of the heaters' cooling process. The temperature increase of each heater in the channel is quantified to clearly identify the contributions attributed to the self-heating and power dissipation in the other heaters (both upstream and downstream). The conjugate coefficients are invariant with the heat generation rate in the array of heaters when assuming a defined geometry, invariable fluid and flow rate, and constant substrate and heater conductivities. The results are numerically obtained by considering three 3D protruding heaters on a twodimensional (2D) array by ANSYS/FluentTM 15.0 software. The conservation equations are solved by a coupled procedure within a single calculation domain comprising of solid and fluid regions and by considering a steady state laminar airflow with constant properties. Some examples are shown, indicating the effects of substrate thermal conductivity and Reynolds number on conjugate influence coefficients. 展开更多
关键词 channel flow conjugate forced convection-conduction cooling conjugate influence coefficients dis-crete heating invariant descriptor thermal management
原文传递
全氢罩式退火炉退火热过程的研究(Ⅱ)——对流换热系数和钢卷径向等效导热系数的分析 被引量:14
20
作者 林林 张欣欣 +4 位作者 左燚 向顺华 刘铁树 钮龙英 黄夏兰 《北京科技大学学报》 EI CAS CSCD 北大核心 2003年第3期254-257,共4页
介绍影响全氢罩式退火炉内换热的两个重要参数——对流换热系数和钢卷径向等效导热系数,详尽分析了两个参数的影响因素,并对比了氮气和氢气气氛下两参数的不同,从而在机理上阐明了全氢罩式炉相对传统混氢罩式炉的优越性,为优化炉内换热... 介绍影响全氢罩式退火炉内换热的两个重要参数——对流换热系数和钢卷径向等效导热系数,详尽分析了两个参数的影响因素,并对比了氮气和氢气气氛下两参数的不同,从而在机理上阐明了全氢罩式炉相对传统混氢罩式炉的优越性,为优化炉内换热提供了理论的依据. 展开更多
关键词 全氢罩式退火炉 退火热过程 换热机理 对流换热系数 钢卷径向等效导热系数 强化传热
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部