A comparative study of the seismic performance of 2×1 pile groups considering different degrees of batter(0°for vertical,10°and 20°)embedded in single homogeneous liquefiable sand through fully cou...A comparative study of the seismic performance of 2×1 pile groups considering different degrees of batter(0°for vertical,10°and 20°)embedded in single homogeneous liquefiable sand through fully coupled three-dimensional dynamic analyses is presented.The effects of inertial interaction are considered with structures having two different periods.The performance of pile groups is investigated for the fixed and pinned pile to cap connections for both floating and end bearing types of pile groups.Slenderness ratios of piles were also varied to enable a comprehensive understanding.Investigations have been carried out for three earthquake motions having varied dominant frequencies.It is observed that batter pile groups in liquefiable soils provide beneficial effects on piles and superstructure responses for both fixed and pinned head pile to cap connections for long period structures.However,for short period structures,a beneficial effect is most evident for fixed head connection.展开更多
基金Ministry of Earth Sciences,Govt.of India,for Providing Financial Assistance for the Research(Project No.MoES/P.O.(Seismo)/1(303)/2017)。
文摘A comparative study of the seismic performance of 2×1 pile groups considering different degrees of batter(0°for vertical,10°and 20°)embedded in single homogeneous liquefiable sand through fully coupled three-dimensional dynamic analyses is presented.The effects of inertial interaction are considered with structures having two different periods.The performance of pile groups is investigated for the fixed and pinned pile to cap connections for both floating and end bearing types of pile groups.Slenderness ratios of piles were also varied to enable a comprehensive understanding.Investigations have been carried out for three earthquake motions having varied dominant frequencies.It is observed that batter pile groups in liquefiable soils provide beneficial effects on piles and superstructure responses for both fixed and pinned head pile to cap connections for long period structures.However,for short period structures,a beneficial effect is most evident for fixed head connection.