期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Structure of augmentation quotients of finite homocyclic abelian groups 被引量:5
1
作者 Guo-ping TANG School of Mathematical Sciences,Graduate University of Chinese Academy of Sciences,Beijing 100049,China 《Science China Mathematics》 SCIE 2007年第9期1280-1288,共9页
Let G be a finite abelian group and its Sylow p-subgroup a direct product of copies of a cyclic group of order p r , i.e., a finite homocyclic abelian group. Let Δ n (G) denote the n-th power of the augmentation ide... Let G be a finite abelian group and its Sylow p-subgroup a direct product of copies of a cyclic group of order p r , i.e., a finite homocyclic abelian group. Let Δ n (G) denote the n-th power of the augmentation ideal Δ(G) of the integral group ring ?G. The paper gives an explicit structure of the consecutive quotient group Q n (G) = Δ n (G)/Δ n+1(G) for any natural number n and as a consequence settles a problem of Karpilovsky for this particular class of finite abelian groups. 展开更多
关键词 integral group ring augmentation ideal consecutive quotient of augmentation ideal 16S34 20C05
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部