Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am...Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ...This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.展开更多
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor...This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants t...Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.展开更多
Bruton’s tyrosine kinase inhibitors(BTKis)have revolutionized the treatment of B-cell lymphomas.However,safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy.A...Bruton’s tyrosine kinase inhibitors(BTKis)have revolutionized the treatment of B-cell lymphomas.However,safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy.A comprehensive and systematic expert consensus from a pharmacological perspective is lacking for safety issues associated with BTKi treatment.A multidisciplinary consensus working group was established,comprising 35 members from the fields of hematology,cardiovascular disease,cardio-oncology,clinical pharmacy,and evidencebased medicine.This evidence-based expert consensus was formulated using an evidence-based approach and the Delphi method.The Joanna Briggs Institute Critical Appraisal(JBI)tool and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)approach were used to rate the quality of evidence and grade the strength of recommendations,respectively.This consensus provides practical recommendations for BTKis medication based on nine aspects within three domains,including the management of common adverse drug events such as bleeding,cardiovascular events,and hematological toxicity,as well as the management of drug-drug interactions and guidance for special populations.This multidisciplinary expert consensus could contribute to promoting a multi-dimensional,comprehensive and standardized management of BTKis.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services ope...Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way.In this paper,we address the problem of identifying multiple classes of Bitcoin services,and for the poor classification of individual addresses that do not have significant features,we propose a Bitcoin address identification scheme based on joint multi-model prediction using the mapping relationship between addresses and entities.The innovation of the method is to(1)Extract as many valuable features as possible when an address is given to facilitate the multi-class service identification task.(2)Unlike the general supervised model approach,this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.Specifically,after obtaining the overall features,the address classification and entity clustering tasks are performed separately,and the results are subjected to graph-basedmaximization consensus.The final result ismade to baseline the individual address classification results while satisfying the constraint of having similarly behaving entities as far as possible.By testing and evaluating over 26,000 Bitcoin addresses,our feature extraction method captures more useful features.In addition,the combined multi-learner model obtained results that exceeded the baseline classifier reaching an accuracy of 77.4%.展开更多
This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel...This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.展开更多
Objective: To evaluate transperineal laser ablation (TPLA) with Echolaser® (Echolaser® TPLA, Elesta S.p.A., Calenzano, Italy) as a treatment for benign prostatic hyperplasia (BPH) and prostate cancer (PCa) u...Objective: To evaluate transperineal laser ablation (TPLA) with Echolaser® (Echolaser® TPLA, Elesta S.p.A., Calenzano, Italy) as a treatment for benign prostatic hyperplasia (BPH) and prostate cancer (PCa) using the Delphi consensus method.Methods: Italian and international experts on BPH and PCa participated in a collaborative consensus project. During two rounds, they expressed their opinions on Echolaser® TPLA for the treatment of BPH and PCa answering online questionnaires on indications, methodology, and potential complications of this technology. Level of agreement or disagreement to reach consensus was set at 75%. If the consensus was not achieved, questions were modified after each round. A final round was performed during an online meeting, in which results were discussed and finalized.Results: Thirty-two out of forty invited experts participated and consensus was reached on all topics. Agreement was achieved on recommending Echolaser® TPLA as a treatment of BPH in patients with ample range of prostate volume, from <40 mL (80%) to >80 mL (80%), comorbidities (100%), antiplatelet or anticoagulant treatment (96%), indwelling catheter (77%), and strong will of preserving ejaculatory function (100%). Majority of respondents agreed that Echolaser® TPLA is a potential option for the treatment of localized PCa (78%) and recommended it for low-risk PCa (90%). During the final round, experts concluded that it can be used for intermediate-risk PCa and it should be proposed as an effective alternative to radical prostatectomy for patients with strong will of avoiding urinary incontinence and sexual dysfunction. Almost all participants agreed that the transperineal approach of this organ-sparing technique is safer than transrectal and transurethral approaches typical of other techniques (97% of agreement among experts). Pre-procedural assessment, technical aspects, post-procedural catheterization, pharmacological therapy, and expected outcomes were discussed, leading to statements and recommendations.Conclusion: Echolaser® TPLA is a safe and effective procedure that treats BPH and localized PCa with satisfactory functional and sexual outcomes.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitor...BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.展开更多
Clinical practice guidelines drive clinical practice and clinicians rely to them when trying to answer their most common questions.One of the most important position papers in the field of gastro-esophageal reflux dis...Clinical practice guidelines drive clinical practice and clinicians rely to them when trying to answer their most common questions.One of the most important position papers in the field of gastro-esophageal reflux disease(GERD)is the one produced by the Lyon Consensus.Recently an updated second version has been released.Mean nocturnal baseline impedance(MNBI)was proposed by the first Consensus to act as supportive evidence for GERD diagnosis.Originally a cut-off of 2292 Ohms was proposed,a value revised in the second edition.The updated Consensus recommended that an MNBI<1500 Ohms strongly suggests GERD while a value>2500 Ohms can be used to refute GERD.The proposed cut-offs move in the correct direction by diminishing the original cut-off,nevertheless they arise from a study of normal subjects where cut-offs were provided by measuring the mean value±2SD and not in symptomatic patients.However,data exist that even symptomatic patients with inconclusive disease or reflux hypersensitivity(RH)show lower MNBI values in comparison to normal subjects or patients with functional heartburn(FH).Moreover,according to the data,MNBI,even among symptomatic patients,is affected by age and body mass index.Also,various studies have proposed different cut-offs by using receiver operating characteristic curve analysis even lower than the one proposed.Finally,no information is given for patients submitted to on-proton pump inhibitors pH-impedance studies even if new and extremely important data now exist.Therefore,even if MNBI is an extremely important tool when trying to approach patients with reflux symptoms and could distinguish conclusive GERD from RH or FH,its values should be interpreted with caution.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this...In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is prop...In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is proposed,which consists of a distributed fixed-time observer,a fixed-time disturbance observer,a nonsmooth antidisturbance backstepping controller,and the fixed-time stability analysis is conducted by using the Lyapunov theory correspondingly.This paper includes three main improvements.First,a distributed fixed-time observer is developed for each follower to obtain an estimate of the leader’s output by utilizing the topology of the communication network.Second,a fixed-time disturbance observer is given to estimate the lumped disturbances for feedforward compensation.Finally,a nonsmooth antidisturbance backstepping tracking controller with feedforward compensation for lumped disturbances is designed.In order to mitigate the“explosion of complexity”in the tradi-tional backstepping approach,we have implemented a modified nonsmooth command filter to enhance the performance of the closed-loop system.The simulation results show that the pro-posed method is effective.展开更多
基金the National Natural Science Foundation of China(71871121).
文摘Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.
基金Project supported by the National Natural Science Foundation of China(Grant No.62363005)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20161BAB212032 and 20232BAB202034)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant Nos.GJJ202602 and GJJ202601)。
文摘This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金supported by the National Natural Science Foundation of China(Grant No.62102449)awarded to W.J.Wang.
文摘Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis.
基金supported by the National Natural Science Foundation of China(NSFC)(No.72074005 and No.72304007)the special fund of the National Clinical Key Specialty Construction Program,P.R.China(2023).
文摘Bruton’s tyrosine kinase inhibitors(BTKis)have revolutionized the treatment of B-cell lymphomas.However,safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy.A comprehensive and systematic expert consensus from a pharmacological perspective is lacking for safety issues associated with BTKi treatment.A multidisciplinary consensus working group was established,comprising 35 members from the fields of hematology,cardiovascular disease,cardio-oncology,clinical pharmacy,and evidencebased medicine.This evidence-based expert consensus was formulated using an evidence-based approach and the Delphi method.The Joanna Briggs Institute Critical Appraisal(JBI)tool and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)approach were used to rate the quality of evidence and grade the strength of recommendations,respectively.This consensus provides practical recommendations for BTKis medication based on nine aspects within three domains,including the management of common adverse drug events such as bleeding,cardiovascular events,and hematological toxicity,as well as the management of drug-drug interactions and guidance for special populations.This multidisciplinary expert consensus could contribute to promoting a multi-dimensional,comprehensive and standardized management of BTKis.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.
基金sponsored by the National Natural Science Foundation of China Nos.62172353,62302114 and U20B2046Future Network Scientific Research Fund Project No.FNSRFP-2021-YB-48Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1221045。
文摘Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way.In this paper,we address the problem of identifying multiple classes of Bitcoin services,and for the poor classification of individual addresses that do not have significant features,we propose a Bitcoin address identification scheme based on joint multi-model prediction using the mapping relationship between addresses and entities.The innovation of the method is to(1)Extract as many valuable features as possible when an address is given to facilitate the multi-class service identification task.(2)Unlike the general supervised model approach,this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.Specifically,after obtaining the overall features,the address classification and entity clustering tasks are performed separately,and the results are subjected to graph-basedmaximization consensus.The final result ismade to baseline the individual address classification results while satisfying the constraint of having similarly behaving entities as far as possible.By testing and evaluating over 26,000 Bitcoin addresses,our feature extraction method captures more useful features.In addition,the combined multi-learner model obtained results that exceeded the baseline classifier reaching an accuracy of 77.4%.
文摘This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.
文摘Objective: To evaluate transperineal laser ablation (TPLA) with Echolaser® (Echolaser® TPLA, Elesta S.p.A., Calenzano, Italy) as a treatment for benign prostatic hyperplasia (BPH) and prostate cancer (PCa) using the Delphi consensus method.Methods: Italian and international experts on BPH and PCa participated in a collaborative consensus project. During two rounds, they expressed their opinions on Echolaser® TPLA for the treatment of BPH and PCa answering online questionnaires on indications, methodology, and potential complications of this technology. Level of agreement or disagreement to reach consensus was set at 75%. If the consensus was not achieved, questions were modified after each round. A final round was performed during an online meeting, in which results were discussed and finalized.Results: Thirty-two out of forty invited experts participated and consensus was reached on all topics. Agreement was achieved on recommending Echolaser® TPLA as a treatment of BPH in patients with ample range of prostate volume, from <40 mL (80%) to >80 mL (80%), comorbidities (100%), antiplatelet or anticoagulant treatment (96%), indwelling catheter (77%), and strong will of preserving ejaculatory function (100%). Majority of respondents agreed that Echolaser® TPLA is a potential option for the treatment of localized PCa (78%) and recommended it for low-risk PCa (90%). During the final round, experts concluded that it can be used for intermediate-risk PCa and it should be proposed as an effective alternative to radical prostatectomy for patients with strong will of avoiding urinary incontinence and sexual dysfunction. Almost all participants agreed that the transperineal approach of this organ-sparing technique is safer than transrectal and transurethral approaches typical of other techniques (97% of agreement among experts). Pre-procedural assessment, technical aspects, post-procedural catheterization, pharmacological therapy, and expected outcomes were discussed, leading to statements and recommendations.Conclusion: Echolaser® TPLA is a safe and effective procedure that treats BPH and localized PCa with satisfactory functional and sexual outcomes.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
文摘BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.
文摘Clinical practice guidelines drive clinical practice and clinicians rely to them when trying to answer their most common questions.One of the most important position papers in the field of gastro-esophageal reflux disease(GERD)is the one produced by the Lyon Consensus.Recently an updated second version has been released.Mean nocturnal baseline impedance(MNBI)was proposed by the first Consensus to act as supportive evidence for GERD diagnosis.Originally a cut-off of 2292 Ohms was proposed,a value revised in the second edition.The updated Consensus recommended that an MNBI<1500 Ohms strongly suggests GERD while a value>2500 Ohms can be used to refute GERD.The proposed cut-offs move in the correct direction by diminishing the original cut-off,nevertheless they arise from a study of normal subjects where cut-offs were provided by measuring the mean value±2SD and not in symptomatic patients.However,data exist that even symptomatic patients with inconclusive disease or reflux hypersensitivity(RH)show lower MNBI values in comparison to normal subjects or patients with functional heartburn(FH).Moreover,according to the data,MNBI,even among symptomatic patients,is affected by age and body mass index.Also,various studies have proposed different cut-offs by using receiver operating characteristic curve analysis even lower than the one proposed.Finally,no information is given for patients submitted to on-proton pump inhibitors pH-impedance studies even if new and extremely important data now exist.Therefore,even if MNBI is an extremely important tool when trying to approach patients with reflux symptoms and could distinguish conclusive GERD from RH or FH,its values should be interpreted with caution.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72031009 and 61473338)。
文摘In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金supported by the National Defense Basic Scientific Research Project(JCKY2020130C025)the National Science and Technology Major Project(J2019-III-0020-0064,J2019-V-0014-0109)。
文摘In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is proposed,which consists of a distributed fixed-time observer,a fixed-time disturbance observer,a nonsmooth antidisturbance backstepping controller,and the fixed-time stability analysis is conducted by using the Lyapunov theory correspondingly.This paper includes three main improvements.First,a distributed fixed-time observer is developed for each follower to obtain an estimate of the leader’s output by utilizing the topology of the communication network.Second,a fixed-time disturbance observer is given to estimate the lumped disturbances for feedforward compensation.Finally,a nonsmooth antidisturbance backstepping tracking controller with feedforward compensation for lumped disturbances is designed.In order to mitigate the“explosion of complexity”in the tradi-tional backstepping approach,we have implemented a modified nonsmooth command filter to enhance the performance of the closed-loop system.The simulation results show that the pro-posed method is effective.