A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardwa...A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.展开更多
The research purpose is invention (construction) of a formal logical inference of the Law of Conservation of Energy within a logically formalized axiomatic epistemology-and-axiology theory Sigma from a precisely defin...The research purpose is invention (construction) of a formal logical inference of the Law of Conservation of Energy within a logically formalized axiomatic epistemology-and-axiology theory Sigma from a precisely defined assumption of a-priori-ness of knowledge. For realizing this aim, the following work has been done: 1) a two-valued algebraic system of formal axiology has been defined precisely and applied to proper-philosophy of physics, namely, to an almost unknown (not-recognized) formal-axiological aspect of the physical law of conservation of energy;2) the formal axiomatic epistemology-and-axiology theory Sigma has been defined precisely and applied to proper-physics for realizing the above-indicated purpose. Thus, a discrete mathematical model of relationship between philosophy of physics and universal epistemology united with formal axiology has been constructed. Results: 1) By accurate computing relevant compositions of evaluation-functions within the discrete mathematical model, it is demonstrated that a formal-axiological analog of the great conservation law of proper physics is a formal-axiological law of two-valued algebra of metaphysics. (A precise algorithmic definition of the unhabitual (not-well-known) notion “formal-axiological law of algebra of metaphysics” is given.) 2) The hitherto never published significantly new nontrivial scientific result of investigation presented in this article is a formal logical inference of the law of conservation of energy within the formal axiomatic theory Sigma from conjunction of the formal-axiological analog of the law of conservation of energy and the assumption of a-priori-ness of knowledge.展开更多
It is pointed out that the property of a constant energy characteristic for the circular motions of macroscopic bodies in classical mechanics does not hold when the quantum conditions for the motion are applied. This ...It is pointed out that the property of a constant energy characteristic for the circular motions of macroscopic bodies in classical mechanics does not hold when the quantum conditions for the motion are applied. This is so because any macroscopic body—lo-cated in a high-energy quantum state—is in practice forced to change this state to a state having a lower energy. The rate of the energy decrease is usually extremely small which makes its effect uneasy to detect in course of the observations, or experiments. The energy of the harmonic oscillator is thoroughly examined as an example. Here our point is that not only the energy, but also the oscillator amplitude which depends on energy, are changing with time. In result, no constant positions of the turning points of the oscillator can be specified;consequently the well-known variational procedure concerning the calculation of the action function and its properties cannot be applied.展开更多
Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as...Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as C-D inequalities are pointed out, and finally new and more general conservation laws of energy and corresponding balance equations of energy as well as C-D inequalities in local and nonlocal asymmetric continua are presented.展开更多
Existing fundamental laws, balance equations and Clausius-Duhem inequalities in continua with microstructure are systematically restudied, and the incomplete formulations of conservation laws of energy and related C-D...Existing fundamental laws, balance equations and Clausius-Duhem inequalities in continua with microstructure are systematically restudied, and the incomplete formulations of conservation laws of energy and related C-D inequalities are pointed out. Some remarks on existing results are made, and new conservation laws of energy and related C-D inequalities are presented.展开更多
Jointly published by 14 Department headed by Standardization Administraion ofChina(SAC) Subtitle: China will formulate and reformulate 926 standards for energy conservation andcomprehensive u-tilization during 2005 an...Jointly published by 14 Department headed by Standardization Administraion ofChina(SAC) Subtitle: China will formulate and reformulate 926 standards for energy conservation andcomprehensive u-tilization during 2005 and 2007. In the past few days, 14 departments jointlypublished the Development Program of Energy Conservation and Comprehensive Utilization 2005-2007,(Program for short). They are Standardization Administration of China, National Development andReform Commission, Ministry of Land and Resources, Ministry of Establishment, Ministry ofCommunications, Ministry of Information Industry, Ministry of Waster Resources, Ministry ofAgriculture, Ministry of Commerce, General Administration of Quality Supervision, Inspection andQuarantine of the PRC, State Environmental Protection Administration, State Forestry Bureau, StateOceanic Administration and China Meteorological Bureau.展开更多
<strong>Context and Background</strong>: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. <strong...<strong>Context and Background</strong>: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. <strong>Motivation</strong>: We aim at verifying that the total energy conserved in the interaction is <span style="white-space:nowrap;"><i></i></span><i>Pτ, i.e.<span style="white-space:nowrap;"></span></i> the product of the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> times the period τ of the X-rays. <strong>Hypothesis</strong>: Our investigation relies on the hypothesis that the voltage responsivity π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> of the capacitor should be small, according to previous research. The parameter π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> is the ratio between the voltage produced and the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays, and measures the performance of the capacitor in response to the X-rays. <strong>Method</strong>: We measure the voltage produced by the capacitor in response to the X-rays, and then determine the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays according to a procedure already assessed with infrared and visible light. <strong>Results</strong>: In our experiments, <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> turns out to be in the range between 10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3 </sup>W to 10<sup>0</sup> W. Our procedure enables us to unveil the relationship between the average power P and the effective dose, an important operating parameter used to measure the delivery of X-rays in practical applications, such as standard X-ray medical imaging machines. <strong>Conclusions</strong>: We believe that our procedure paves the way for designing a possible X-ray power-meter, a tool presently missing in the market of X-ray characterization tools.展开更多
Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incr...Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incremental rate type are postulated. Via total variations of the former and the latter of them, the principles of virtual displacement and microrotation & stress and couple stress as well as virtual velocity and angular velocity & stress rate and couple stress rate are immediately obtained, respectively. From these principles all balance equations and boundary conditions for micropolar mechanics are naturally and simultaneously deduced. The essential differences between the nontraditional results obtained in this paper and the existing conservation laws of energy are expounded.展开更多
It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on th...It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on the Young’s modulus of a defective solid are studied. Based on the law of the conservation of energy, mathematical formulations are proposed to indicate how the shape, size, and distribution of defects affect the effective Young’s modulus. In this approach, detailed equations are illustrated to represent the shape and size of defects on the effective Young’s modulus. Different from the results obtained from the traditional empirical analyses, mixture law or statistical method, for the first time, our results from the finite element method (FEM) and strict analytical calculation show that the influence of pore radius and crack length on the effective Young’s modulus can be quantified. It is found that the longest crack in a typical microstructure of ceramic coating dominates the contribution of the effective Young’s modulus in the vertical direction of the crack.展开更多
The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in ligh...The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects of light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconducting interfaces of field effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the validity of the finding is investigated in the low frequency spectrum of the EM waves by exploring possible consequences in microwave technology, and in harvesting through capacitors the radio waves dispersed in the environment after being used in telecommunications as a source of usable electricity.展开更多
The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to ...The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to linear cases is analyzed. The more general conservation principle of energy, energy balance equation and Hamilton principle of thermopiezoelectricity and magnetoelasticity for micropolar continua are established. The corresponding complete equations of motion and boundary conditions as well as balance equations of energy rate for local and nonlocal micropolar thermopiezoelectricity and magnetothermoelasticity are naturally derived. By means of two new functionals and total variation the boundary conditions of displacement, microrotation, electric potential and temperature are also given.展开更多
Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning eff...Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning efficiency of coal and reduce the pollutions of soot, sulfide and the nitride by burning lump coal directly. The CWS is a promising energy saving technique and the effectual substitute of oil. The study on the preparation and application of the CWS has made progresses in many aspects. The present paper studied the basal problems for applying the CWS on the rotary kilns during the calcining-dolomite process in the magnesium factory, summarized the key points for the application process of the CWS and gave the corresponding solutions.展开更多
Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, com...Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.展开更多
A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions o...A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions of mechanical and environmental factors, and corrosive environment accelerates crack propagation mainly in term of anodic dissolution. By studying the variation of mechanical energy and electrochemical energy of anodic dissolution during the crack propagation process, an explicit expression of crack propagation rate is derived by the conservation of energy. The comparisons with experimental data demonstrate the validity of the proposed model. Moreover, the applicable upper-limit crack length for steady crack propagation is determined and the crack propagation life is evaluated.展开更多
Dark energy has been introduced in order to explain the observed acceleration of the expansion of our Universe. It seems to be distributed almost uniformly and it has an essential influence on the present value of the...Dark energy has been introduced in order to explain the observed acceleration of the expansion of our Universe. It seems to be distributed almost uniformly and it has an essential influence on the present value of the Hubble constant which characterizes the rate of this expansion. The Newtonian theory of gravitation is formulated so that the laws of conservation of energy and momentum hold. However, the Universe is designed so that the total amount of energy is slowly, but continually increasing, since its expansion is accelerating. Our examples show that even the Solar System and also our Galaxy imperceptibly expand thanks to dark energy whose origins are tiny antigravity forces. We claim that these forces appear due to the finite speed of gravitational interaction, which causes gravitational aberration effects. We show that effects of dark energy are observable;they are not only globally, but also in local systems. These effects can be measured and are comparable with the present value of the Hubble constant.展开更多
Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting ...Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting materials is unknown. The main infrared features occur around peaks at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μm with the photon’s rest energy at the peaks 0.376, 0.200, 0.161, 0.144, 0.111, and 0.098 eV, respectively. The UIB emission phenomenon has been studied for about forty five years. The prevailing hypothesis is that the materials responsible for UIB are polycyclic aromatic hydrocarbon (PAH) molecules. PAHs are thought to be one of the main forms in which carbon exists in space. And yet, not a single member of this group of compounds had been identified in space definitively until now [1]. In frames of Hypersphere World-Universe Model (WUM), we introduced Dark Matter (DM) particles, named DIONs, with the rest energy 0.199 eV and an energy density of 68.8% of the total energy density of the World. DIONs compose Outer shells of DM Supercluster’s Cores—the main objects of the World [2]. In this paper, we give an explanation of UIB emission based on the self-annihilation of DM particles DIONs and biDIONs (DIONs pairs) with a rest energy about 0.38 eV that depends on the binding energy. To the best of our knowledge, WUM is the only cosmological model in existence that is consistent with UIB emission phenomenon.展开更多
This paper presents an efficient time-integration method for obtaining reliable solutions to the second-order nonlinear dynamic problems in structural engineering. This method employs both the backward-acceleration di...This paper presents an efficient time-integration method for obtaining reliable solutions to the second-order nonlinear dynamic problems in structural engineering. This method employs both the backward-acceleration differentiation formula and the trapezoidal rule, resulting in a self-starting, single step, second-order accurate algorithm. With the same computational effort as the trapezoidal rule, the proposed method remains stable in large deformation and long time range solutions even when the trapezoidal rule fails. Meanwhile, the proposed method has the following characteristics: (1) it is applicable to linear as well as general nonlinear analyses; (2) it does not involve additional variables (e.g. Lagrange multipliers) and artificial parameters; (3) it is a single-solver algorithm at the discrete time points with symmetric effective stiffness matrix and effective load vectors; and (4) it is easy to implement in an existing computational software. Some numerical results indicate that the proposed method is a powerful tool with some notable features for practical nonlinear dynamic analyses.展开更多
基金Project(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.
文摘The research purpose is invention (construction) of a formal logical inference of the Law of Conservation of Energy within a logically formalized axiomatic epistemology-and-axiology theory Sigma from a precisely defined assumption of a-priori-ness of knowledge. For realizing this aim, the following work has been done: 1) a two-valued algebraic system of formal axiology has been defined precisely and applied to proper-philosophy of physics, namely, to an almost unknown (not-recognized) formal-axiological aspect of the physical law of conservation of energy;2) the formal axiomatic epistemology-and-axiology theory Sigma has been defined precisely and applied to proper-physics for realizing the above-indicated purpose. Thus, a discrete mathematical model of relationship between philosophy of physics and universal epistemology united with formal axiology has been constructed. Results: 1) By accurate computing relevant compositions of evaluation-functions within the discrete mathematical model, it is demonstrated that a formal-axiological analog of the great conservation law of proper physics is a formal-axiological law of two-valued algebra of metaphysics. (A precise algorithmic definition of the unhabitual (not-well-known) notion “formal-axiological law of algebra of metaphysics” is given.) 2) The hitherto never published significantly new nontrivial scientific result of investigation presented in this article is a formal logical inference of the law of conservation of energy within the formal axiomatic theory Sigma from conjunction of the formal-axiological analog of the law of conservation of energy and the assumption of a-priori-ness of knowledge.
文摘It is pointed out that the property of a constant energy characteristic for the circular motions of macroscopic bodies in classical mechanics does not hold when the quantum conditions for the motion are applied. This is so because any macroscopic body—lo-cated in a high-energy quantum state—is in practice forced to change this state to a state having a lower energy. The rate of the energy decrease is usually extremely small which makes its effect uneasy to detect in course of the observations, or experiments. The energy of the harmonic oscillator is thoroughly examined as an example. Here our point is that not only the energy, but also the oscillator amplitude which depends on energy, are changing with time. In result, no constant positions of the turning points of the oscillator can be specified;consequently the well-known variational procedure concerning the calculation of the action function and its properties cannot be applied.
文摘Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as C-D inequalities are pointed out, and finally new and more general conservation laws of energy and corresponding balance equations of energy as well as C-D inequalities in local and nonlocal asymmetric continua are presented.
文摘Existing fundamental laws, balance equations and Clausius-Duhem inequalities in continua with microstructure are systematically restudied, and the incomplete formulations of conservation laws of energy and related C-D inequalities are pointed out. Some remarks on existing results are made, and new conservation laws of energy and related C-D inequalities are presented.
文摘Jointly published by 14 Department headed by Standardization Administraion ofChina(SAC) Subtitle: China will formulate and reformulate 926 standards for energy conservation andcomprehensive u-tilization during 2005 and 2007. In the past few days, 14 departments jointlypublished the Development Program of Energy Conservation and Comprehensive Utilization 2005-2007,(Program for short). They are Standardization Administration of China, National Development andReform Commission, Ministry of Land and Resources, Ministry of Establishment, Ministry ofCommunications, Ministry of Information Industry, Ministry of Waster Resources, Ministry ofAgriculture, Ministry of Commerce, General Administration of Quality Supervision, Inspection andQuarantine of the PRC, State Environmental Protection Administration, State Forestry Bureau, StateOceanic Administration and China Meteorological Bureau.
文摘<strong>Context and Background</strong>: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. <strong>Motivation</strong>: We aim at verifying that the total energy conserved in the interaction is <span style="white-space:nowrap;"><i></i></span><i>Pτ, i.e.<span style="white-space:nowrap;"></span></i> the product of the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> times the period τ of the X-rays. <strong>Hypothesis</strong>: Our investigation relies on the hypothesis that the voltage responsivity π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> of the capacitor should be small, according to previous research. The parameter π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> is the ratio between the voltage produced and the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays, and measures the performance of the capacitor in response to the X-rays. <strong>Method</strong>: We measure the voltage produced by the capacitor in response to the X-rays, and then determine the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays according to a procedure already assessed with infrared and visible light. <strong>Results</strong>: In our experiments, <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> turns out to be in the range between 10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3 </sup>W to 10<sup>0</sup> W. Our procedure enables us to unveil the relationship between the average power P and the effective dose, an important operating parameter used to measure the delivery of X-rays in practical applications, such as standard X-ray medical imaging machines. <strong>Conclusions</strong>: We believe that our procedure paves the way for designing a possible X-ray power-meter, a tool presently missing in the market of X-ray characterization tools.
文摘Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incremental rate type are postulated. Via total variations of the former and the latter of them, the principles of virtual displacement and microrotation & stress and couple stress as well as virtual velocity and angular velocity & stress rate and couple stress rate are immediately obtained, respectively. From these principles all balance equations and boundary conditions for micropolar mechanics are naturally and simultaneously deduced. The essential differences between the nontraditional results obtained in this paper and the existing conservation laws of energy are expounded.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50801005)
文摘It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on the Young’s modulus of a defective solid are studied. Based on the law of the conservation of energy, mathematical formulations are proposed to indicate how the shape, size, and distribution of defects affect the effective Young’s modulus. In this approach, detailed equations are illustrated to represent the shape and size of defects on the effective Young’s modulus. Different from the results obtained from the traditional empirical analyses, mixture law or statistical method, for the first time, our results from the finite element method (FEM) and strict analytical calculation show that the influence of pore radius and crack length on the effective Young’s modulus can be quantified. It is found that the longest crack in a typical microstructure of ceramic coating dominates the contribution of the effective Young’s modulus in the vertical direction of the crack.
文摘The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects of light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconducting interfaces of field effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the validity of the finding is investigated in the low frequency spectrum of the EM waves by exploring possible consequences in microwave technology, and in harvesting through capacitors the radio waves dispersed in the environment after being used in telecommunications as a source of usable electricity.
文摘The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to linear cases is analyzed. The more general conservation principle of energy, energy balance equation and Hamilton principle of thermopiezoelectricity and magnetoelasticity for micropolar continua are established. The corresponding complete equations of motion and boundary conditions as well as balance equations of energy rate for local and nonlocal micropolar thermopiezoelectricity and magnetothermoelasticity are naturally derived. By means of two new functionals and total variation the boundary conditions of displacement, microrotation, electric potential and temperature are also given.
文摘Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning efficiency of coal and reduce the pollutions of soot, sulfide and the nitride by burning lump coal directly. The CWS is a promising energy saving technique and the effectual substitute of oil. The study on the preparation and application of the CWS has made progresses in many aspects. The present paper studied the basal problems for applying the CWS on the rotary kilns during the calcining-dolomite process in the magnesium factory, summarized the key points for the application process of the CWS and gave the corresponding solutions.
文摘Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.
基金the Special Research Fund for the National Natural Science Foundation of China(No. 10772116)
文摘A general method to predict the crack propagation of anodic dissolution corrosion fatigue is developed in this paper. Crack propagation of corrosion fatigue is presented as the result of the synergistic interactions of mechanical and environmental factors, and corrosive environment accelerates crack propagation mainly in term of anodic dissolution. By studying the variation of mechanical energy and electrochemical energy of anodic dissolution during the crack propagation process, an explicit expression of crack propagation rate is derived by the conservation of energy. The comparisons with experimental data demonstrate the validity of the proposed model. Moreover, the applicable upper-limit crack length for steady crack propagation is determined and the crack propagation life is evaluated.
文摘Dark energy has been introduced in order to explain the observed acceleration of the expansion of our Universe. It seems to be distributed almost uniformly and it has an essential influence on the present value of the Hubble constant which characterizes the rate of this expansion. The Newtonian theory of gravitation is formulated so that the laws of conservation of energy and momentum hold. However, the Universe is designed so that the total amount of energy is slowly, but continually increasing, since its expansion is accelerating. Our examples show that even the Solar System and also our Galaxy imperceptibly expand thanks to dark energy whose origins are tiny antigravity forces. We claim that these forces appear due to the finite speed of gravitational interaction, which causes gravitational aberration effects. We show that effects of dark energy are observable;they are not only globally, but also in local systems. These effects can be measured and are comparable with the present value of the Hubble constant.
文摘Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting materials is unknown. The main infrared features occur around peaks at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μm with the photon’s rest energy at the peaks 0.376, 0.200, 0.161, 0.144, 0.111, and 0.098 eV, respectively. The UIB emission phenomenon has been studied for about forty five years. The prevailing hypothesis is that the materials responsible for UIB are polycyclic aromatic hydrocarbon (PAH) molecules. PAHs are thought to be one of the main forms in which carbon exists in space. And yet, not a single member of this group of compounds had been identified in space definitively until now [1]. In frames of Hypersphere World-Universe Model (WUM), we introduced Dark Matter (DM) particles, named DIONs, with the rest energy 0.199 eV and an energy density of 68.8% of the total energy density of the World. DIONs compose Outer shells of DM Supercluster’s Cores—the main objects of the World [2]. In this paper, we give an explanation of UIB emission based on the self-annihilation of DM particles DIONs and biDIONs (DIONs pairs) with a rest energy about 0.38 eV that depends on the binding energy. To the best of our knowledge, WUM is the only cosmological model in existence that is consistent with UIB emission phenomenon.
基金sponsored by the Scientific Foundation for Returned Oversea Scholars of China (Grant No.20101020044)the State Key Laboratory of Hydro–Science and Engineering (Grant Nos. 2008Z6 and 2009-TC-2)
文摘This paper presents an efficient time-integration method for obtaining reliable solutions to the second-order nonlinear dynamic problems in structural engineering. This method employs both the backward-acceleration differentiation formula and the trapezoidal rule, resulting in a self-starting, single step, second-order accurate algorithm. With the same computational effort as the trapezoidal rule, the proposed method remains stable in large deformation and long time range solutions even when the trapezoidal rule fails. Meanwhile, the proposed method has the following characteristics: (1) it is applicable to linear as well as general nonlinear analyses; (2) it does not involve additional variables (e.g. Lagrange multipliers) and artificial parameters; (3) it is a single-solver algorithm at the discrete time points with symmetric effective stiffness matrix and effective load vectors; and (4) it is easy to implement in an existing computational software. Some numerical results indicate that the proposed method is a powerful tool with some notable features for practical nonlinear dynamic analyses.