期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model
1
作者 CHEN Jiazhen KASIMU Alimujiang +3 位作者 REHEMAN Rukeya WEI Bohao HAN Fuqiang ZHANG Yan 《Journal of Arid Land》 SCIE CSCD 2024年第6期852-874,共23页
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research ... To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management. 展开更多
关键词 PLUS model InVEST model Bosten Lake Basin water yield water conservation land-use simulation Geodetector
下载PDF
Influence of ecological function protection zone on the water conservation in Gansu-Qinghai Contiguous Region of the upper Yellow River
2
作者 TONG Huali CHEN Qingbo ZHANG Xuan 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1345-1357,共13页
The implementation of Ecological Function Protection Zone(EFPZ)policy is significant for the ecological restoration and conservation of soil and water in the territory space.This manuscript analyzed and quantified the... The implementation of Ecological Function Protection Zone(EFPZ)policy is significant for the ecological restoration and conservation of soil and water in the territory space.This manuscript analyzed and quantified the impact of EFPZ on the regional water conservation function,based on land use data from 2005,2008,2010,2015 and 2020,by conducting a counterfactual simulation along with the GeoSOS-FLUS model and the InVEST model.The results demonstrate that the delineation of EFPZ can significantly influence the water conservation.(1)From 2010 to 2020,as the EFPZ was implemented,the water conservation in the study area was increasing year by year,with a growth rate of 0.03×10^(8) m^(3)∙a^(-1).On the other hand,the simulated water conservation capacity without the implementation of EFPZ decreased year by year,with a decrease rate of 0.01×10^(8) m^(3)∙a^(-1).(2)The EFPZ accounts for only 23%of the total area,but the contribution rate of water conservation reaches 80%.The actual values of water conservation and average water yield per unit pixel in the EFPZ show an increasing trend both internally and externally,while the counterfactual simulation values exhibit a decreasing trend.(3)The water conservation is much higher within the EFPZ than without EFPZ.The implementation of EFPZ has a significant effect on the improvement of the water conservation capacity in Maqu EFPZ and Yellow River Source EFPZ.The protection effectiveness should be enhanced in Qilian Mountain EFPZ and afforestation activities need to be carefully considered in Loess Plateau EFPZ. 展开更多
关键词 water conservation function Ecological Function Protection Zone Counterfactual simulation Geo SOS-FLUS model InVEST model
下载PDF
Native Plants Can Help Conserve Water
3
作者 Mark Harris 张韧弦 徐曙 《当代外语研究》 1999年第8期26-29,共4页
这篇文章本来是针对美国读者的,但我们把它引介过来的目的是想让读者对美国的绿化状况有所了解。 Xeriscaping(无水绿化)对我们来说是个陌生的名词(欲探究其构词法的读者可在文中找到答案),可它对于维持生态平衡和节约水资源意义重大。... 这篇文章本来是针对美国读者的,但我们把它引介过来的目的是想让读者对美国的绿化状况有所了解。 Xeriscaping(无水绿化)对我们来说是个陌生的名词(欲探究其构词法的读者可在文中找到答案),可它对于维持生态平衡和节约水资源意义重大。因为about half the water we use in our homes is diverted to the lawn and gardenpatch,反过来,Done right,xeriscaping can cut landscape watering demandanywhere from 20 percent to 80 percent。由于国情不同,以上两句对我们来说不免生隔靴搔痒之感。但文中涉及的花卉栽培技术、选种(原产还是非原产)以及对喜干喜湿植物的判断等都提供了具体的指导,对于喜好侍花弄草的朋友是很有启发的。 生态环境恶化和资源危机业已得到全球人士的共识,美国人从身边绿化着眼,提出“无水绿化”的观点,方法简便易行,又着眼于生态大计,且惠泽子孙,他们这种务实的态度是值得我们学习的。 展开更多
关键词 Native Plants Can Help conserve water
原文传递
Spatio-temporal variation of water conservation and its impact factors on the southern slope of Qilian Mountains 被引量:2
4
作者 WEI Xingtao Oliver Valentine EBOY +1 位作者 CAO Guangchao XU Lu 《Regional Sustainability》 2023年第1期54-67,共14页
The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p... The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively. 展开更多
关键词 water conservation InVEST model The southern slope of Qilian Mountains water balance principle EVAPOTRANSPIRATION Analytic Hierarchy Process(AHP)
下载PDF
Spatio-temporal Changes in Water Conservation Ecosystem Service During 1990–2019 in the Tumen River Basin, Northeast China 被引量:2
5
作者 ZHANG Peng LIU Xiaoping +5 位作者 ZHU Weihong LI Chunjing JIN Ri YAN Hengqi GU Chengyang WANG Jingzhi 《Chinese Geographical Science》 SCIE CSCD 2023年第1期102-115,共14页
The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecol... The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecological and water resource management.The Tumen River Basin(TRB) is located in the core of the Northeast Asian ecological network and has been experiencing severe ecological crises and water shortages in recent years due to climate change and human activities. However, these crises have not been fully revealed to the extent that corresponding scientific measures are lacking. This study analyzed the spatial and temporal evolution characteristics and drivers of WC in the TRB from 1990 to 2019 based on the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model. The results showed that: 1) under the combined effect of nature and socioeconomics, the WC depth of the TRB has slowly increased at a rate of 0.11 mm/yr in the past 30 years, with an average WC depth of 36.14 mm. 2) The main driving factor of the spatial variation in WC is precipitation, there is a significant interaction between precipitation and velocity, the interaction between each factor is higher than the contribution of a single factor, and the interactions between factors all have nonlinear enhancement and two-factor enhancement. 3) Among the seven counties and municipalities in the study area, the southern part of Helong City and the southeastern part of Longjing City are extremely important areas for WC(> 75 mm), and they should be regarded as regional water resources and ecological priority protection areas. It is foreseen that under extreme climate conditions in the future, the WC of the watershed is under great potential threat, and protection measures such as afforestation and forestation should begin immediately. Furthermore, the great interannual fluctuations in WC depth may place more stringent requirements on the choice of time scales in the ecosystem service assessment process. 展开更多
关键词 water conservation Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model Geodetector driving factors Tumen River Basin
下载PDF
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model 被引量:1
6
作者 CAO Yijie MA Yonggang +2 位作者 BAO Anming CHANG Cun LIU Tie 《Journal of Arid Land》 SCIE CSCD 2023年第12期1455-1473,共19页
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w... The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD. 展开更多
关键词 water conservation function water yield Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model climate change land use/land cover change(LUCC) Ili River Delta Lake Balkhash
下载PDF
Sediment sources and their impacts on a check dam-controlled watershed, Loess Plateau, China
7
作者 BAI Lu-lu SHI Peng +9 位作者 WANG Wen LI Zhan-bin YU Kun-xia LI Peng CUI Ling-zhou SHEN Rong-jian GUAN Mu-hong DU Xin-chun ZHANG Xun-le CHEN Wen-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1660-1673,共14页
Soil erosion is a major issue in Loess Plateau,China,and quantitative analyses of sediment sources are crucial for soil erosion control.In this study,a combination of flood couplet analysis and composite fingerprint i... Soil erosion is a major issue in Loess Plateau,China,and quantitative analyses of sediment sources are crucial for soil erosion control.In this study,a combination of flood couplet analysis and composite fingerprint identification was used for historical reconstructions of soil erosion in sediment source areas in Loess Plateau.Each flood couplet was constructed based on sediment 137Cs activity,and past soil erosion was calculated using soil bulk density and storage capacity curves.The contribution rates of the sediment sources were calculated using the fingerprinting method,and the amount of erosion in the sediment source areas was estimated.The best fingerprint combination(Cr,Ni,V,and TOC)enabled a 97.2%recognition of sediment sources from 29 flood events(1956–1990)in the Loess Plateau.The contribution rates of gullies,farmland,grassland,and shrubland were 44.89%,26.38%,10.49%,and 18.24%,respectively.These four land use types contributed 1,227,751,512,and 279 tons of sediments,respectively.Re-vegetation decreased soil erosion(1966–1983),whereas deforestation increased soil erosion(1956–1965 and 1984–1990).Rational soil and water conservation measures on slopes and check dam construction in gullies are therefore suggested to mitigate erosion. 展开更多
关键词 Check dam Sediment source Soil and water conservation Land use changes Loess Plateau
下载PDF
Long-term improvements in water conservation functions at Qilian Mountain National Park, northwest China
8
作者 GAO Xiang HUANG Xing-xing +5 位作者 CHANG Shu-hang DANG Qian-wen WEN Rui-yang LO Kevin LI Jie YAN An 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2885-2897,共13页
Water conservation is one of the most important ecosystem functions.This study uses the InVEST model to examine the water conservation function of the Qilian Mountain National Park(QMNP),an important water supply area... Water conservation is one of the most important ecosystem functions.This study uses the InVEST model to examine the water conservation function of the Qilian Mountain National Park(QMNP),an important water supply area in northwest China.We analyzed the spatiotemporal water conservation patterns of QMNP from 1988 to 2019.It showed that the water conservation capacity in QMNP has increased over the past 32 years,reaching a peak of 6.495×108 m3 in 2019.The area with an increased water conservation capacity is 12 times larger than the area with a reduced capacity.We also examined how climatic,land-use,vegetation coverage,and topographical factors influence water conservation functions.We found that precipitation is the main climatic factor in water conservation.The water conservation function also varies with land-cover type,with forests having the highest capacity,followed by grasslands.Lastly,topographical factors,including altitude and slope,also shape the spatial patterns of water conservation functions in QMNP. 展开更多
关键词 water conservation function Ecosystem services InVEST model Qilian Mountain National Park Northwest China
下载PDF
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
9
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 Soil and water Conservation Regionalization Driving factors Soil erosion Geographical detector model Spatial heterogeneity
下载PDF
Analysis of Construction Technology for River Regulation and Bank Protection in Water Conservancy Projects
10
作者 Zheng Yuan 《Journal of World Architecture》 2023年第3期73-76,共4页
There are many problems and deficiencies in traditional bank protection methods,which cause certain damage to the ecological environment of river channels.Recently,the issues of river management,improving bank protect... There are many problems and deficiencies in traditional bank protection methods,which cause certain damage to the ecological environment of river channels.Recently,the issues of river management,improving bank protection technology,formulating reasonable construction measures,and ensuring the smooth and efficient implementation of construction have been receiving increasing attention. 展开更多
关键词 water conservancy engineering River management Bank protection Construction technique
下载PDF
Results and Application of Soil and Water Conservation Monitoring in the Yellow River Basin
11
作者 Yaxi Cai Xiaodong Yang Binhua Zhao 《Journal of Architectural Research and Development》 2023年第3期40-45,共6页
Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitori... Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitoring content and indicators have been increasing,and the monitoring technology and methods have been improving.This paper mainly analyzes the status of soil and water conservation monitoring in the Yellow River Basin,as well as the construction of the monitoring system and related research,in order to provide a reference for watershed management and development and the scientific research of water and soil conservation. 展开更多
关键词 Soil and water conservation Monitoring results APPLICATION
下载PDF
Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China
12
作者 LI Mingqian WANG He +3 位作者 DU Wei GU Hongbiao ZHOU Fanchao CHI Baoming 《Journal of Arid Land》 SCIE CSCD 2024年第8期1023-1043,共21页
Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ec... Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ecological environment,they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment.Therefore,it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes.Using the Soil and Water Assessment Tool(SWAT)models and sensitivity analyses based on the Budyko hypothesis,this study quantitatively evaluated the effects of climate change,direct water withdrawal,and soil and water conservation measures on runoff in the LRB during different periods,including different responses to runoff discharge,hydrological regime,and flood processes.The runoff series were divided into a baseline period(1956-1969)and two altered periods,i.e.,period 1(1970-1999)and period 2(2000-2020).Human activities were the main cause of the decrease in runoff during the altered periods,contributing 86.03%(-29.61 mm),while the contribution of climate change was only 13.70%(-4.70 mm).The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season.Analysis of two flood cases indicated a 66.00%-84.00%reduction in basin runoff capacity due to soil and water conservation measures in the upstream area.Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98%and 55.16%,respectively,even with nearly double the precipitation.The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area.These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB. 展开更多
关键词 RUNOFF soil and water conservation climate variability FLOOD human activities Liuhe River Basin
下载PDF
Regional differences of water conservation in Beijing’s forest ecosystem 被引量:10
13
作者 ZHANG Biao XIE Gao-di YAN Yu-ping YANG Yan-gang 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第2期295-300,共6页
The water conservation capacities of main forests in Beijing,China were estimated through the quantitative analysis.Various methods developed in published papers on forest hydrology were employed.The forests in Huairo... The water conservation capacities of main forests in Beijing,China were estimated through the quantitative analysis.Various methods developed in published papers on forest hydrology were employed.The forests in Huairou,Yanqing,Miyun,Mentougou and Fangshan districts are the main contributors to water conservation(the cumulative ratio reaches 65%),and the forests in Tongzhou,Chaoyang,Shunyi and Daxing districts have the highest water conservation capacity(3000 m3/ha).Altitude and slope are the key factors to affect the water conservation capacity.The forests located in Plain Area,Hilly Area,Low Mountain,and Middle Mountain contributes 27%,28%,24% and 21% of the conserved water,respectively.The water conservation capacity of forests in Plain Area(2 948 m3/ha),is superior to the forests in other regions.And the forests situated on Flat Slope,Moderate Slope and Gentle Slope constitute the largest proportion(nearly 93%) of water conservation,while the forests on Flat Slope has the highest water conservation capacity(2 797 m3/ha),and the forest on Steep slope has the lowest water conservation capacity(948 m3/ha). 展开更多
关键词 forest ecosystem regional difference water conservation BEIJING
下载PDF
Benefits of Conservation Agriculture on Soil and Water Conservation and Its Progress in China 被引量:15
14
作者 LI Ling-ling HUANG Gao-bao +3 位作者 ZHANG Ren-zhi Bill Bellotti Guangdi Li Kwong Yin Chan 《Agricultural Sciences in China》 CAS CSCD 2011年第6期850-859,共10页
Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture ... Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in one word, it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world's arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. This paper described terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture. 展开更多
关键词 China conservation tillage crop residue mulch NO-TILL soil and water conservation SUSTAINABILITY
下载PDF
Evolutionary trend of water cycle in Beichuan River Basin of China under the influence of vegetation restoration 被引量:7
15
作者 Liang Zhu Jing-tao Liu +2 位作者 Ming-nan Yang Yu-xi Zhang De-ping Wen 《Journal of Groundwater Science and Engineering》 2021年第3期202-211,共10页
The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected... The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells. 展开更多
关键词 Vegetation coverage water cycle in a river basin Ecological water consumption water conservation
下载PDF
Study on the Effects of Natural Factors on Water Conservation Capacity of Qilian Mountain 被引量:4
16
作者 GAN Xiao-li 1,SUN De-quan 1,2,3,ZHANG Lin-bo 2,3,JIA Qing-tang 2,3 1.School of Water Resources and Environment,China University of Geosciences,Beijing 100083,China 2.Key Laboratory of State Environment Protection Regional Eco-process and Function Assessment,Beijing 100012,China 3.Chinese Research Academy of Environmental Sciences,Beijing 100012,China 《Meteorological and Environmental Research》 CAS 2011年第11期46-48,63,共4页
[Objective]The study aimed at analyzing the effects of natural factors on water conservation capacity of Qilian Mountain.[Method] Based on water conservation quantity,elevation data and SPOT-VEGETATION remote sensing ... [Objective]The study aimed at analyzing the effects of natural factors on water conservation capacity of Qilian Mountain.[Method] Based on water conservation quantity,elevation data and SPOT-VEGETATION remote sensing data of Qilian Mountain in 2003,the relationship between water conservation quantity and influencing factors like elevation,slope,aspect and vegetation index varying greatly in the studied area was analyzed quantitatively by means of statistical method,and the effects of natural factors on water conservation capacity of Qilian Mountain were discussed on the basis of water conservation capacity.[Result]In water conservation district of Qilian Mountain,water conservation amount was higher in the region with elevation of 3 600-4 200 m or slope of 15°-40°;sunny slope (with slope of 90°-180°) and the area with high vegetation coverage had the strongest water conservation capacity.[Conclusion]The research could provide scientific references for the management of water resources and vegetation protection in Qilian Mountain. 展开更多
关键词 water conservation amount Qilian Mountain water conservation capacity China
下载PDF
Joint optimization scheduling for water conservancy projects incomplex river networks 被引量:5
17
作者 Qin Liu Guo-hua Fang +1 位作者 Hong-bin Sun Xue-wen Wu 《Water Science and Engineering》 EI CAS CSCD 2017年第1期43-52,共10页
In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi... In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks. 展开更多
关键词 Complex river network water conservancy project Hydraulic structure Flow capacity simulation Scheduling model Optimal scheduling
下载PDF
Evaluation index system for positive operation of water conservancy projects 被引量:3
18
作者 Qing-yuan ZHU Guo-hua FANG 《Water Science and Engineering》 EI CAS 2009年第4期110-117,共8页
The conditions for the positive operation of water conservancy projects are described in this paper. A scientific and effective evaluation index system was established based on frequency analysis, theoretical analysis... The conditions for the positive operation of water conservancy projects are described in this paper. A scientific and effective evaluation index system was established based on frequency analysis, theoretical analysis, and expert consultation. This evaluation index system can be divided into six first-level indices: the degree to which facilities are intact and functionality standards are reached, the status of operation and management funds, the rationality and degree of advancement of the management team structure, the adaptability and rationality of the water conservancy project management system, the degree of automatization and informationization of the management techniques, and the conduciveness of the exterior environment. The weights for evaluation indices were obtained through the analytic hierarchy process method with consideration of the difference between public welfare and profit-oriented water conservancy projects. This study provides a scientific method for evaluating the positive operation of water conservancy projects. 展开更多
关键词 water conservancy project positive operation evaluation index system analytic hierarchy process WEIGHT
下载PDF
Impact of coal mining on groundwater of Luohe Formation in Binchang mining area 被引量:3
19
作者 Kui Sun Limin Fan +6 位作者 Yucheng Xia Cheng Li Jianping Chen Shuai Gao Boyun Wu Jie Peng Yiwei Ji 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期88-102,共15页
Groundwater of Luohe Formation is the main water source for industrial and agricultural and residential use in Binchang mining area,which is one of the key elements to water conservation coal mining.However,few studie... Groundwater of Luohe Formation is the main water source for industrial and agricultural and residential use in Binchang mining area,which is one of the key elements to water conservation coal mining.However,few studies are available to document the enrichment characteristics and influence of underground coal mining on groundwater for the Luohe Formation.This study evaluates the changes of groundwater levels and spring flow caused by mining activities to explore the influence mechanism of coal mining on groundwater by comparatively analysing existing mining data and survey data combined with a series of mapping methods.The results show that the aquifer of Luohe Formation are gradually thinning south-eastwards,disappeared at the mining boundary.In the vertical direction,the lithological structure is distinct,due to alternative sedimentation of meandering river facies and braided river facies.According to the yielding property,the aquifer is divided into three sections,namely,strong water-rich section,medium water-rich section,and weak water-rich section,which are located in northwest and central part,southwest,and the rest part of the mining area,respectively.Mining of Tingnan Coal Mine since 2004 has caused a 3.16 to 194.87 meters drop in groundwater level of Luohe Formation.Until 2015,70.10%of the mining area undergoes a groundwater level drop larger than 10.00 meters.Another influence of underground mining is that the total flow from 34 springs in 8 southern coal mines of the area has decreased by 286.48 L/s with a rate of decrease at 46.95%from 2007 to 2017.The areas that groundwater level falls or spring flow declines are manly located in the mine gob areas.Results also indicate that the ratio of the height of water conducted fracture zone to the mining height in Binchang mining area is between 16.85 and 27.92.This may increase ground water flow in vertical direction,causing a water level in the aquifer system to drop and ultimately decreasing the flow from the springs.The research results will provide data and theoretical support for the protection of groundwater resources and water conservation coal mining of Luohe Formation in Binchang mining area. 展开更多
关键词 Aquifer enrichment Groundwater level water conservation coal mining Luohe Formation Binchang mining area
下载PDF
Toward Water Conservation Society:the Connotationand Assessment Indication System 被引量:2
20
作者 Chen Ying,Zhao Yong & Liu ChangmingSchool of Environment,Beijing Normal University,State Key Joint Laboratory of Environment Simulation and Pollution Control,Beijing,100875,100875,ChinaChina Institute of Water Resources and Hydraulic Research,Beijing,100044,China 《Chinese Journal of Population,Resources and Environment》 2004年第2期45-48,共4页
Water saving and developing water conservation society are the two key strategies both for wise water allocation and sustainable utilization. The paper analyses the connotation of water saving and water conservation s... Water saving and developing water conservation society are the two key strategies both for wise water allocation and sustainable utilization. The paper analyses the connotation of water saving and water conservation society. Essentially, water saving means freeing up water from non-beneficial uses and providing it to some more productive uses. Basic principles for setting indicator are presented by providing efficient use of water, considering social issues and ecological protection. An integrated assessing water saving system aiming at more sustainable and efficient consumption is given considering unbalanced social and economic development in regions and basins. The hierarchy indicator system provides qualified tools to the practice of water conservation and evaluates the value for water conservation society construction. 展开更多
关键词 water conservation water use efficiency hierarchy assessment indicator.
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部