期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Feature Selection for SVM Classifiers Based on Discretization
1
作者 李烨 蔡云泽 许晓鸣 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期268-273,共6页
The rough sets and Boolean reasoning based discretization approach (RSBRA) is no t suitable for feature selection for machine learning algorithms such as neural network or SVM because the information loss due to discr... The rough sets and Boolean reasoning based discretization approach (RSBRA) is no t suitable for feature selection for machine learning algorithms such as neural network or SVM because the information loss due to discretization is large. A mo dified RSBRA for feature selection was proposed and evaluated with SVM classifie rs. In the presented algorithm, the level of consistency, coined from the rough sets theory, is introduced to substitute the stop criterion of circulation of th e RSBRA, which maintains the fidelity of the training set after discretization. The experimental results show the modified algorithm has better predictive accur acy and less training time than the original RSBRA. 展开更多
关键词 feature selection t discretization rough sets SVM classification level of consistency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部