In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of t...In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of this approach are demonstrated by applying it successfully to some important fractional differential equations, namely, the time fractional Burgers, fractional Sawada–Kotera, and fractional coupled mKdV equation. A variety of new exact solutions to these equations under study are constructed.展开更多
Parameter estimation for ordinary differential equations arises in many fields of science and engineering. To be the best of our knowledge, traditional methods are often either computationally intensive or inaccurate ...Parameter estimation for ordinary differential equations arises in many fields of science and engineering. To be the best of our knowledge, traditional methods are often either computationally intensive or inaccurate for statistical inference. Ramsay et al.(2007) proposed a generalized profiling procedure. It is easily implementable and has been demonstrated to have encouraging numerical performance. However, little is known about statistical properties of this procedure. In this paper, we provide a theoretical justification of the generalized profiling procedure. Under some regularity conditions, the procedure is shown to be consistent for a broad range of tuning parameters. When the tuning parameters are sufficiently large, the procedure can be further shown to be asymptotically normal and efficient.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11101332,11201371,11371293 the Natural Science Foundation of Shaanxi Province under Grant No.2015JM1037
文摘In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of this approach are demonstrated by applying it successfully to some important fractional differential equations, namely, the time fractional Burgers, fractional Sawada–Kotera, and fractional coupled mKdV equation. A variety of new exact solutions to these equations under study are constructed.
基金supported by National Science Foundation of USA (Grant Nos. DMS1209191 and DMS-1507511)
文摘Parameter estimation for ordinary differential equations arises in many fields of science and engineering. To be the best of our knowledge, traditional methods are often either computationally intensive or inaccurate for statistical inference. Ramsay et al.(2007) proposed a generalized profiling procedure. It is easily implementable and has been demonstrated to have encouraging numerical performance. However, little is known about statistical properties of this procedure. In this paper, we provide a theoretical justification of the generalized profiling procedure. Under some regularity conditions, the procedure is shown to be consistent for a broad range of tuning parameters. When the tuning parameters are sufficiently large, the procedure can be further shown to be asymptotically normal and efficient.