期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis on effective stress formula and consolidation of gassy muddy clay
1
作者 徐浩峰 应宏伟 +1 位作者 谢新宇 谢康和 《Journal of Central South University》 SCIE EI CAS 2014年第4期1594-1599,共6页
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ... In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected. 展开更多
关键词 muddy clay gas bubble consolidation effective stress unsaturated soil
下载PDF
GIS-based Effect Assessment of Soil Erosion Before and After Gully Land Consolidation: A Case Study of Wangjiagou Project Region, Loess Plateau 被引量:32
2
作者 LIU Yansui GUO Yanjun +1 位作者 LI Yurui LI Yuheng 《Chinese Geographical Science》 SCIE CSCD 2015年第2期137-146,共10页
The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project s... The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project subsidy approaching the end, it is concerned that farmers of fewer subsidies may reclaim land again. Thus, ′Gully Land Consolidation Project′(GLCP) was initiated in 2010. The core of the GLCP was to create more land suitable for farming in gullies so as to reduce land reclamation on the slopes which are ecological vulnerable areas. This paper aims to assess the effect of the GLCP on soil erosion problems by studying Wangjiagou project region located in the central part of Anzi valley in the middle of the Loess Plateau, mainly using the revised universal soil loss equation(RUSLE) based on GIS. The findings show that the GLCP can help to reduce soil shipment by 9.87% and it creates more terraces and river-nearby land suitable for farming which account for 27.41% of the whole study area. Thus, it is feasible to implement the GLCP in places below gradient 15°, though the GLCP also intensifies soil erosion in certain places such as field ridge, village land, floodplain, natural grassland, and shrub land. In short, the GLCP develops new generation dam land and balances the short-term and long-term interests to ease the conflicts between economic development and environmental protection. Furthermore, the GLCP and the GFG could also be combined preferably. On the one hand, the GFG improves the ecological environment, which could offer certain safety to the GLCP, on the other hand, the GLCP creates more farmland favorable for farming in gullies instead of land reclamation on the slopes, which could indirectly protect the GFG project. 展开更多
关键词 gully land consolidation land-resource engineering revised universal soil loss equation(RUSLE) effect assessment Loess Plateau
下载PDF
Time-dependent lateral response of pile embedded in elasto-plastic soil 被引量:2
3
作者 J.M.ABBAS Z.H.CHIK +1 位作者 M.R.TAHA Q.S.M.SHAFIQU 《Journal of Central South University》 SCIE EI CAS 2010年第2期372-380,共9页
A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the li... A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior. 展开更多
关键词 single pile consolidation effect lateral response soil pressure 2D finite element method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部