期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simplified method for predicating consolidation settlement of soft ground improved by floating soil-cement column 被引量:12
1
作者 龚晓南 田效军 胡文韬 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2699-2706,共8页
A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consol... A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consolidation model and equal strain assumption, the governing equation was derived for the consolidation of clayey subsoil reinforced by soil-cement column. By modifying the boundary condition of the interface between the improved layer and underlying layer on seepage and pore-water pressure, the analytical solution of consolidation of soft ground improved by floating soil-cement column was developed under depth-dependent ramp load. The results of the parameter analysis of consolidation behavior show that the consolidation rate is closely related with the depth replacement ratio by the column and the permeability of upper layer. The influence of column-soil constrained modulus ratio and radius ratio of the influence zone to the column on consolidation is also affected by depth replacement ratio. The column-soil total stress ratio increases with time and approaches the final value accompanied with the dissipation of excess pore water pressure. 展开更多
关键词 axisymmetric consolidation model floating soil-cement column consolidation depth-dependent ramp load analytical solution
下载PDF
Analytical solution of vacuum preloading technology combined with electroosmosis coupling considering impacts of distribution of soil’s electrical potential 被引量:2
2
作者 FENG Jian-ting SHEN Yang +1 位作者 XU Jun-hong SHI Wen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2544-2555,共12页
Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential i... Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future. 展开更多
关键词 vacuum preloading-electroosmosis non-linear distribution 2D plane strain coupling consolidation model pore water pressure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部