In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffr...In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.展开更多
Einstein’s field equations with variable gravitational and cosmological constants are considered in presence of perfect fluid for locally-rotationally-symmetric (LRS) Bianchi type-V space-time discussion in context o...Einstein’s field equations with variable gravitational and cosmological constants are considered in presence of perfect fluid for locally-rotationally-symmetric (LRS) Bianchi type-V space-time discussion in context of the particle creation. We present new shear free solutions for both absence and presence of particle creation. The solution describes the particle and entropy generation in the anisotropic cosmological models. We observe that time variation of gravitational and cosmological constant is needed for particle creation phenomena. Moreover, we obtained the particle production rate Γ(t) for this model and discussed in detail.展开更多
Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in ea...Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in each heat capacity vs pressure curve. Intermolecular interaction in the fluids was studied.展开更多
Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the rel...Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.展开更多
Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to pred...Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to predict accurately the power consumption and mean shear rate for designing novel impeller. Metzner-Otto method is a widely accepted method to solve these questions in mixing non-Newtonian fluids. As a result, Metzner-Otto constant will become a key factor to achieve an optimum way of economical mixing. In this paper, taking glycerine and xanthan gum solutions as research system, the power consumption, stirred by the impeller composed of perturbed six-bent-bladed turbine (6PBT) with differently geometrical characteristics in a cylindrical vessel, is studied by means of computational fluid dynamics (CFD). The flow is modeled as laminar and a multiple reference frame (MRF) approach is used to solve the discretized equations of motion. In order to determine the capability of CFD to forecast the flow process, the torque test experiment is used to measure the glycerine solution power consumption. The theological properties of the xanthan gum solutions are determined by a Brookfleld rheometer. It is observed that the power consumption predicted by numerical simulation agrees well with those measured using torque experiment method in stirring glycerine solution, which validate the numerical model. Metzner-Otto constant is almost not correlated with the flow behavior index of pseudoplastic fluids. This paper establishes the complete correlations of power constant and Metzner-Otto constant with impeller geometrical characteristics through linear regression analysis, which provides the valuable instructions and references for accurately predicting the power consumption and mean shear rate of pseudoplastic fluids in laminar flow, comparatively.展开更多
A Minkowskian solution of the equation of General Relativity (as written by Einstein in 1915) is trivial because it simply means that both members of the equation are equal to zero. However, if alternatively, one cons...A Minkowskian solution of the equation of General Relativity (as written by Einstein in 1915) is trivial because it simply means that both members of the equation are equal to zero. However, if alternatively, one considers the complete equation with a non-zero constant Λ (Einstein 1917), a Minkowskian solution is no longer trivial because it amounts to impose a constraint on the right hand side of the equation (i.e. a non-null stress-energy tensor). If furthermore one identifies (as usual) this tensor to the one of a perfect fluid, one finds that this fluid has a positive energy density and a negative pressure that depend on the three constants of the equation (i.e. gravitational constant G, cosmological constant Λ and velocity of light c). When doing that (§1), one has to consider the “Minkowskian Vacuum” as a physical object of GR (an enigmatic non-baryonic Minkowskian fluid). Can one build a model of this object on the basis of a dynamical equilibrium between the effective gravitational attraction due to the positive energy density versus the negative pressure repulsion? We propose to study such a model, where the (enigmatic) fluid is assumed to exist only in a limited sphere whose surface acts like a “test body” sensitive to the gravitational field created by the fluid. No static equilibrium exists, but a pseudoNewtonian “dynamical equilibrium” (§2) can be reached if the pseudoEuclidean fluid is in state of expansion. Up to there, we have simply constructed a model of an “abstract Universe” (i.e. the limited sphere: There is no fluid outside this sphere!) that gives to a (purely mathematical) constant Λ a concrete physical meaning. We discover finally that our expanding fluid has not only dynamical (gravitational) properties (§3) but also optical properties that are connected with Doppler Redshift (§4). Remembering that recent observations in Cosmology indicate that the “real Universe” seems to be “Flat” and in “Accelerated Expansion”;remembering also (after all) that the archetypal Flat Universe is simply a Minkowskian Universe, we logically wonder if the unexpected Minkowskian global solution, could not be also a significant cosmological model (conclusion).展开更多
The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equa...The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equations describing the flow model have been obtained one by one for two different cases of source and sink. To observe the effect of the physical parameters such as source/sink and vertex viscosity, the numerical results of the velocity and microrotational velocity are finally shown on the graphs.展开更多
In this article, we show how to build a cosmological model characterized by the hierarchy of coupling constants and a set of Quantum Hall Fluids in BF theory. The resulting field theory is operated on Abelian Gauge fi...In this article, we show how to build a cosmological model characterized by the hierarchy of coupling constants and a set of Quantum Hall Fluids in BF theory. The resulting field theory is operated on Abelian Gauge fields within Gauge transformations on the U(1) group, which introduces the Chern-Simmons class with topological mass. The mathematical background on which the model is based is a topological graph manifold of Brieskorn Seifert fibered-sphere space-time grid (lower dimensions), through a Kaluza-Klein reduction. This model offers a feasible alternative to the precise calculation of the cosmological constant Λ, much more accurate than the string landscape and baby universe models that have been proposed. Numerical results are given for coupling constants hierarchy. Model predictions may work as an argumental base to justify topological interpretations of space-time.展开更多
文摘In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.
文摘Einstein’s field equations with variable gravitational and cosmological constants are considered in presence of perfect fluid for locally-rotationally-symmetric (LRS) Bianchi type-V space-time discussion in context of the particle creation. We present new shear free solutions for both absence and presence of particle creation. The solution describes the particle and entropy generation in the anisotropic cosmological models. We observe that time variation of gravitational and cosmological constant is needed for particle creation phenomena. Moreover, we obtained the particle production rate Γ(t) for this model and discussed in detail.
文摘Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in each heat capacity vs pressure curve. Intermolecular interaction in the fluids was studied.
文摘Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.
基金Supported by Shandong Provincial Science and Technology Development planning Program of China(Grant No.2013YD09007)Scientific Foundation of Qingdao University of Science and Technology of China
文摘Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to predict accurately the power consumption and mean shear rate for designing novel impeller. Metzner-Otto method is a widely accepted method to solve these questions in mixing non-Newtonian fluids. As a result, Metzner-Otto constant will become a key factor to achieve an optimum way of economical mixing. In this paper, taking glycerine and xanthan gum solutions as research system, the power consumption, stirred by the impeller composed of perturbed six-bent-bladed turbine (6PBT) with differently geometrical characteristics in a cylindrical vessel, is studied by means of computational fluid dynamics (CFD). The flow is modeled as laminar and a multiple reference frame (MRF) approach is used to solve the discretized equations of motion. In order to determine the capability of CFD to forecast the flow process, the torque test experiment is used to measure the glycerine solution power consumption. The theological properties of the xanthan gum solutions are determined by a Brookfleld rheometer. It is observed that the power consumption predicted by numerical simulation agrees well with those measured using torque experiment method in stirring glycerine solution, which validate the numerical model. Metzner-Otto constant is almost not correlated with the flow behavior index of pseudoplastic fluids. This paper establishes the complete correlations of power constant and Metzner-Otto constant with impeller geometrical characteristics through linear regression analysis, which provides the valuable instructions and references for accurately predicting the power consumption and mean shear rate of pseudoplastic fluids in laminar flow, comparatively.
文摘A Minkowskian solution of the equation of General Relativity (as written by Einstein in 1915) is trivial because it simply means that both members of the equation are equal to zero. However, if alternatively, one considers the complete equation with a non-zero constant Λ (Einstein 1917), a Minkowskian solution is no longer trivial because it amounts to impose a constraint on the right hand side of the equation (i.e. a non-null stress-energy tensor). If furthermore one identifies (as usual) this tensor to the one of a perfect fluid, one finds that this fluid has a positive energy density and a negative pressure that depend on the three constants of the equation (i.e. gravitational constant G, cosmological constant Λ and velocity of light c). When doing that (§1), one has to consider the “Minkowskian Vacuum” as a physical object of GR (an enigmatic non-baryonic Minkowskian fluid). Can one build a model of this object on the basis of a dynamical equilibrium between the effective gravitational attraction due to the positive energy density versus the negative pressure repulsion? We propose to study such a model, where the (enigmatic) fluid is assumed to exist only in a limited sphere whose surface acts like a “test body” sensitive to the gravitational field created by the fluid. No static equilibrium exists, but a pseudoNewtonian “dynamical equilibrium” (§2) can be reached if the pseudoEuclidean fluid is in state of expansion. Up to there, we have simply constructed a model of an “abstract Universe” (i.e. the limited sphere: There is no fluid outside this sphere!) that gives to a (purely mathematical) constant Λ a concrete physical meaning. We discover finally that our expanding fluid has not only dynamical (gravitational) properties (§3) but also optical properties that are connected with Doppler Redshift (§4). Remembering that recent observations in Cosmology indicate that the “real Universe” seems to be “Flat” and in “Accelerated Expansion”;remembering also (after all) that the archetypal Flat Universe is simply a Minkowskian Universe, we logically wonder if the unexpected Minkowskian global solution, could not be also a significant cosmological model (conclusion).
文摘The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equations describing the flow model have been obtained one by one for two different cases of source and sink. To observe the effect of the physical parameters such as source/sink and vertex viscosity, the numerical results of the velocity and microrotational velocity are finally shown on the graphs.
文摘In this article, we show how to build a cosmological model characterized by the hierarchy of coupling constants and a set of Quantum Hall Fluids in BF theory. The resulting field theory is operated on Abelian Gauge fields within Gauge transformations on the U(1) group, which introduces the Chern-Simmons class with topological mass. The mathematical background on which the model is based is a topological graph manifold of Brieskorn Seifert fibered-sphere space-time grid (lower dimensions), through a Kaluza-Klein reduction. This model offers a feasible alternative to the precise calculation of the cosmological constant Λ, much more accurate than the string landscape and baby universe models that have been proposed. Numerical results are given for coupling constants hierarchy. Model predictions may work as an argumental base to justify topological interpretations of space-time.