Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.The...Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.Then,in addition to the induced metric g on Mm,there are three other important invariants of Y:the Blaschke tensor A,the conic second fundamental form B,and the conic Mobius form C;these are naturally defined by Y and are all invariant under the group of rigid motions on E_(s)^(m+p+1).In particular,g,A,B,C form a complete invariant system for Y,as was originally shown by C.P.Wang for the case in which s=0.The submanifold Y is said to be Blaschke isoparametric if its conic Mobius form C vanishes identically and all of its Blaschke eigenvalues are constant.In this paper,we study the space-like Blaschke isoparametric submanifolds of a general codimension in the light-cone E_(s)^(m+p+1) for the extremal case in which s=p.We obtain a complete classification theorem for all the m-dimensional space-like Blaschke isoparametric submanifolds in Epm+p+1of constant scalar curvature,and of two distinct Blaschke eigenvalues.展开更多
We study the ordinary differential equations related to rotationally symmetric pseudo-Khler metricsof constant scalar curvatures. We present various solutions on various holomorphic line bundles over projectivespaces ...We study the ordinary differential equations related to rotationally symmetric pseudo-Khler metricsof constant scalar curvatures. We present various solutions on various holomorphic line bundles over projectivespaces and their disc bundles, and discuss the phase change phenomenon when one suitably changes initialvalues.展开更多
S. S. Chern posed a problem as follows. Consider the set of all closed minimal hypersurfaces in S<sup>n+1</sup>(1) with constant scalar curvature. Take the scalar curvature and the square of the length o...S. S. Chern posed a problem as follows. Consider the set of all closed minimal hypersurfaces in S<sup>n+1</sup>(1) with constant scalar curvature. Take the scalar curvature and the square of the length of the second fundamental form as a function on this set. Is the image of this function a discrete set of positive numbers?展开更多
基金supported by Foundation of Natural Sciences of China(11671121,11871197 and 11431009)。
文摘Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.Then,in addition to the induced metric g on Mm,there are three other important invariants of Y:the Blaschke tensor A,the conic second fundamental form B,and the conic Mobius form C;these are naturally defined by Y and are all invariant under the group of rigid motions on E_(s)^(m+p+1).In particular,g,A,B,C form a complete invariant system for Y,as was originally shown by C.P.Wang for the case in which s=0.The submanifold Y is said to be Blaschke isoparametric if its conic Mobius form C vanishes identically and all of its Blaschke eigenvalues are constant.In this paper,we study the space-like Blaschke isoparametric submanifolds of a general codimension in the light-cone E_(s)^(m+p+1) for the extremal case in which s=p.We obtain a complete classification theorem for all the m-dimensional space-like Blaschke isoparametric submanifolds in Epm+p+1of constant scalar curvature,and of two distinct Blaschke eigenvalues.
基金supported by National Natural Science Foundation of China (Grant Nos.10425101, 10631050)National Basic Research Program of China (973 Project) (Grant No. 2006cB805905)
文摘We study the ordinary differential equations related to rotationally symmetric pseudo-Khler metricsof constant scalar curvatures. We present various solutions on various holomorphic line bundles over projectivespaces and their disc bundles, and discuss the phase change phenomenon when one suitably changes initialvalues.
文摘S. S. Chern posed a problem as follows. Consider the set of all closed minimal hypersurfaces in S<sup>n+1</sup>(1) with constant scalar curvature. Take the scalar curvature and the square of the length of the second fundamental form as a function on this set. Is the image of this function a discrete set of positive numbers?