The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degr...The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degree using a tubular photoreactor. The carbon containing TiO2 nanoparticles are synthesized by the oxidation of TiCl4 in propane/air flame CVD process with futile fraction up to 0.3 and carbon mass fractions up to 0.22, respectively. Thin TiO2 film is coated on the wall of the tubular reactor by sedimentation method. Effects of rutile mass fraction and carbon content have been examined on the apparent 1 ^st order rate constant and results show that, at 570ppm of formaldehyde loaded air stream, 80% relative humidity and about 100nm thin TiOa film, the 1^st order rate constant increases with increasing rutile mass fraction up to 0.3, occurs a maximum at the carbon content of about 5% by weight and is about 2.5 times of that at carbon content about zero or above 10%.展开更多
An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust...An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26. When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.展开更多
Poly(ether ether ketone)s(PEEK) are a class of high performance engineering thermoplastics known for their excellent thermal, mechanical, and electrical properties. This class of advanced materials has currently r...Poly(ether ether ketone)s(PEEK) are a class of high performance engineering thermoplastics known for their excellent thermal, mechanical, and electrical properties. This class of advanced materials has currently received considerable attention for potential application in aerospace, electronics, automobile and other high technology fields. However, it is difficult for PEEK to be processed because of their high melting temperature and poor solubility.展开更多
A kind of high Fluorine-containing poly(aryl ether) without side reaction was synthesized in a two-step synthesis. Its structure was confirmed by FTIR, 1H NMR and 19F NMR. The polymer shows an excellent thermal stabil...A kind of high Fluorine-containing poly(aryl ether) without side reaction was synthesized in a two-step synthesis. Its structure was confirmed by FTIR, 1H NMR and 19F NMR. The polymer shows an excellent thermal stability, good solubility, low water absorption, low dielectric constant and low refractive index. Flexible and transparant thin film can be easily obtained by compression moulding or solution casting. The polymer would be a promising material used for microelectronics and waveguide devices.展开更多
文摘The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degree using a tubular photoreactor. The carbon containing TiO2 nanoparticles are synthesized by the oxidation of TiCl4 in propane/air flame CVD process with futile fraction up to 0.3 and carbon mass fractions up to 0.22, respectively. Thin TiO2 film is coated on the wall of the tubular reactor by sedimentation method. Effects of rutile mass fraction and carbon content have been examined on the apparent 1 ^st order rate constant and results show that, at 570ppm of formaldehyde loaded air stream, 80% relative humidity and about 100nm thin TiOa film, the 1^st order rate constant increases with increasing rutile mass fraction up to 0.3, occurs a maximum at the carbon content of about 5% by weight and is about 2.5 times of that at carbon content about zero or above 10%.
基金supported by the National Natural Science Foundation of China(No.11472167)
文摘An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26. When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.
基金Supported by the Natural Science Foundation of Beij ing City,China(No.2062021)
文摘Poly(ether ether ketone)s(PEEK) are a class of high performance engineering thermoplastics known for their excellent thermal, mechanical, and electrical properties. This class of advanced materials has currently received considerable attention for potential application in aerospace, electronics, automobile and other high technology fields. However, it is difficult for PEEK to be processed because of their high melting temperature and poor solubility.
文摘A kind of high Fluorine-containing poly(aryl ether) without side reaction was synthesized in a two-step synthesis. Its structure was confirmed by FTIR, 1H NMR and 19F NMR. The polymer shows an excellent thermal stability, good solubility, low water absorption, low dielectric constant and low refractive index. Flexible and transparant thin film can be easily obtained by compression moulding or solution casting. The polymer would be a promising material used for microelectronics and waveguide devices.