期刊文献+
共找到1,581篇文章
< 1 2 80 >
每页显示 20 50 100
Preoperative prediction of hepatocellular carcinoma microvascular invasion based on magnetic resonance imaging feature extraction artificial neural network
1
作者 Jing-Yi Xu Yu-Fan Yang +2 位作者 Zhong-Yue Huang Xin-Ye Qian Fan-Hua Meng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2546-2554,共9页
BACKGROUND Hepatocellular carcinoma(HCC)recurrence is highly correlated with increased mortality.Microvascular invasion(MVI)is indicative of aggressive tumor biology in HCC.AIM To construct an artificial neural networ... BACKGROUND Hepatocellular carcinoma(HCC)recurrence is highly correlated with increased mortality.Microvascular invasion(MVI)is indicative of aggressive tumor biology in HCC.AIM To construct an artificial neural network(ANN)capable of accurately predicting MVI presence in HCC using magnetic resonance imaging.METHODS This study included 255 patients with HCC with tumors<3 cm.Radiologists annotated the tumors on the T1-weighted plain MR images.Subsequently,a three-layer ANN was constructed using image features as inputs to predict MVI status in patients with HCC.Postoperative pathological examination is considered the gold standard for determining MVI.Receiver operating characteristic analysis was used to evaluate the effectiveness of the algorithm.RESULTS Using the bagging strategy to vote for 50 classifier classification results,a prediction model yielded an area under the curve(AUC)of 0.79.Moreover,correlation analysis revealed that alpha-fetoprotein values and tumor volume were not significantly correlated with the occurrence of MVI,whereas tumor sphericity was significantly correlated with MVI(P<0.01).CONCLUSION Analysis of variable correlations regarding MVI in tumors with diameters<3 cm should prioritize tumor sphericity.The ANN model demonstrated strong predictive MVI for patients with HCC(AUC=0.79). 展开更多
关键词 Hepatocellular carcinoma Microvascular invasion Artificial neural network Magnetic resonance imaging Tumor sphericity Area under the curve
下载PDF
Application of the N + 2 Transversal Network Method to the Study of a Coupled Resonator Filter
2
作者 Charmolavy Goslavy Lionel Nkouka Moukengue Conrad Onésime Oboulhas Tsahat +2 位作者 Haroun Abba Labane Barol Mafouna Kiminou Achille Makouka 《Open Journal of Applied Sciences》 2024年第6期1412-1424,共13页
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f... This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros. 展开更多
关键词 resonator Filter Coupling Matrix Transmission Zero Transversal network Method
下载PDF
Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure 被引量:5
3
作者 姜恒 王育人 +4 位作者 张密林 胡燕萍 蓝鼎 吴群力 逯还通 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期367-372,共6页
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement... The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range.Moreover, in order to investigate impacts of locally resonant units,some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption. 展开更多
关键词 underwater acoustic absorption wide frequency locally resonant unit interpenetrating networks
下载PDF
Inverse stochastic resonance in modular neural network with synaptic plasticity
4
作者 于永涛 杨晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期45-52,共8页
This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s... This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s synaptic learning rule is employed to characterize synaptic plasticity in this network. Meanwhile, the effects of synaptic plasticity on the ISR dynamics are investigated. Through numerical simulations, it is found that the mean firing rate curve under the influence of bounded noise has an inverted bell-like shape, which implies the appearance of ISR. Moreover, synaptic plasticity with smaller learning rate strengthens this ISR phenomenon, while synaptic plasticity with larger learning rate weakens or even destroys it. On the other hand, the mean firing rate curve under the influence of time delay is found to exhibit a decaying oscillatory process, which represents the emergence of multiple ISR. However, the multiple ISR phenomenon gradually weakens until it disappears with increasing noise amplitude. On the same time, synaptic plasticity with smaller learning rate also weakens this multiple ISR phenomenon, while synaptic plasticity with larger learning rate strengthens it. Furthermore, we find that changes of synaptic learning rate can induce the emergence of ISR phenomenon. We hope these obtained results would provide new insights into the study of ISR in neuroscience. 展开更多
关键词 inverse stochastic resonance synaptic plasticity modular neural network
下载PDF
GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI
5
作者 Md.Atiqur Rahman Mustavi Ibne Masum +4 位作者 Khan Md Hasib M.F.Mridha Sultan Alfarhood Mejdl Safran Dunren Che 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2425-2448,共24页
Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Mag... Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging(MRI).It focuses on distinguishing between Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG).LGGs are benign and typically manageable with surgical resection,while HGGs are malignant and more aggressive.The research introduces an innovative custom convolutional neural network(CNN)model,Glioma-CNN.GliomaCNN stands out as a lightweight CNN model compared to its predecessors.The research utilized the BraTS 2020 dataset for its experiments.Integrated with the gradient-boosting algorithm,GliomaCNN has achieved an impressive accuracy of 99.1569%.The model’s interpretability is ensured through SHapley Additive exPlanations(SHAP)and Gradient-weighted Class Activation Mapping(Grad-CAM++).They provide insights into critical decision-making regions for classification outcomes.Despite challenges in identifying tumors in images without visible signs,the model demonstrates remarkable performance in this critical medical application,offering a promising tool for accurate brain tumor diagnosis which paves the way for enhanced early detection and treatment of brain tumors. 展开更多
关键词 Deep learning magnetic resonance imaging convolutional neural networks explainable AI boosting algorithm ablation
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
6
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
Brain Functional Network Changes in Patients with Poststroke Cognitive Impairment Following Acupuncture Therapy
7
作者 Ran Wang Nian Liu +4 位作者 Hao Xu Peng Zhang Xiaohua Huang Lin Yang Xiaoming Zhang 《Health》 2024年第9期856-871,共16页
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t... Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients. 展开更多
关键词 Cognitive Decline Poststroke Cognitive Impairment Functional Magnetic resonance Imaging Brain Functional network Graph Theoretical Analysis
下载PDF
Fluctuation Resonance of Feed Forward Loops in Gene Regulatory Networks 被引量:1
8
作者 董翊 侯中怀 辛厚文 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第4期359-365,447,共8页
The feed forward loop (FFL), wherein a gene X can regulate target gene Z alone or cooperatively with gene Y, is one of the most important motifs in gene regulatory networks. Gene expression often involves a small nu... The feed forward loop (FFL), wherein a gene X can regulate target gene Z alone or cooperatively with gene Y, is one of the most important motifs in gene regulatory networks. Gene expression often involves a small number of reactant molecules and thus internal molecular fluctuation is considerable. Here we studied how an FFL responds to small external signal inputs at gene X, with particular attention paid to the fluctuation resonance (FR) phenomenon of gene Z. We found that for all coherent FFLs, where the sign of the direct regulation path from X to Z is the same as the overall sign of the indirect path via Y, the FR shows a regular single peak, while for incoherent FFLs, the FR exhibits distinct bimodal shapes. The results indicate that one could use small external signals to help identify the regulatory structure of an unknown FFL in complex gene networks. 展开更多
关键词 Gene regulatory network Fluctuation resonance Feed-forward-loop
下载PDF
Delay-aided stochastic multiresonances on scale-free FitzHugh-Nagumo neuronal networks 被引量:3
9
作者 甘春标 Perc Matjaz 王青云 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期128-133,共6页
The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker ... The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble. Furthermore, we reveal that appropriately tuned delays can induce stochastic multiresonances, appearing at every integer multiple of the pacemaker's oscillation period. We conclude that fine-tuned delay lengths and locally acting pacemakers are vital for ensuring optimal conditions for stochastic resonance on complex neuronal networks. 展开更多
关键词 neuronal networks DELAY stochastic resonance
下载PDF
Spatial coherence resonance induced by coloured noise and parameter diversity in a neuronal network 被引量:2
10
作者 孙晓娟 陆启韶 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期96-101,共6页
Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and paramet... Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented. 展开更多
关键词 neuronal network noise DIVERSITY spatial coherence resonance
下载PDF
Small-worldness of brain networks after brachial plexus injury: a resting-state functional magnetic resonance imaging study 被引量:6
11
作者 Wei-Wei Wang Ye-Chen Lu +4 位作者 Wei-Jun Tang Jun-Hai Zhang Hua-Ping Sun Xiao-Yuan Feng Han-Qiu Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期1061-1065,共5页
Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel... Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged. 展开更多
关键词 nerve regeneration brachial plexus injury functional magnetic resonance imaging small-world network small-world property topology properties functional reorganization clustering coefficient shortest path peripheral nerve injury neural regeneration
下载PDF
Spiral Waves and Multiple Spatial Coherence Resonances Induced by Colored Noise in Neuronal Network 被引量:4
12
作者 TANG Zhao LI Yu-Ye +2 位作者 XI Lei JIA Bing GU Hua-Guang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第1期61-67,共7页
Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bif... Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network. 展开更多
关键词 multiple spatial coherence resonance spiral wave colored noise neuronal network
下载PDF
Coherence Resonance and Noise-Induced Synchronization in Hindmarsh-Rose Neural Network with Different Topologies 被引量:3
13
作者 WEI Du-Qu LUO Xiao-Shu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第4X期759-762,共4页
In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh- Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is fo... In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh- Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is found that the additive noise can induce CR in HR neural network with different topologies and its coherence is optimized by a proper noise level. It is also found that as coupling strength increases the plateau in the measure of coherence curve becomes broadened and the effects of network topology is more pronounced simultaneously. Moreover, we find that increasing the probability p of the network topology leads to an enhancement of noise-induced synchronization in HR neurons network. 展开更多
关键词 coherence resonance small-world network SYNCHRONIZATION Hindmarsh-Rose neural
下载PDF
Breast Tumor Computer-Aided Detection System Based on Magnetic Resonance Imaging Using Convolutional Neural Network 被引量:3
14
作者 Jing Lu Yan Wu +4 位作者 Mingyan Hu Yao Xiong Yapeng Zhou Ziliang Zhao Liutong Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期365-377,共13页
Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing ... Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing between tumor and non-tumor in MRI,a new type of computer-aided detection CAD system for breast tumors is designed in this paper.The CAD system was constructed using three networks,namely,the VGG16,Inception V3,and ResNet50.Then,the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system.Result:CAD system built based on VGG16,Inception V3,and ResNet50 has higher performance than mainstream CAD systems.Among them,the system built based on VGG16 and ResNet50 has outstanding performance.We further explore the impact of the secondary migration on the experimental results in the VGG16 system,and these results show that the migration can improve system performance of the proposed framework.Conclusion:The accuracy of CNN represented by VGG16 is as high as 91.25%,which is more accurate than traditional machine learningmodels.The F1 score of the three basic networks that join the secondary migration is close to 1.0,and the performance of the VGG16-based breast tumor CAD system is higher than Inception V3,and ResNet50. 展开更多
关键词 Computer-aided diagnosis breast cancer VGG16 convolutional neural network magnetic resonance imaging
下载PDF
Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction 被引量:1
15
作者 Xiao-Han Zhang Shen-Quan Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期198-207,共10页
The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection an... The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection and information transmission in neural systems.Moreover,the complex electrical activities of a cell can induce time-varying electromagnetic fields,of which the internal fluctuation can change collective electrical activities of neuronal networks.However,in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among neurons on the collective dynamics of the complex system.Therefore,modeling each node by imposing electromagnetic radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work to the understanding of these network dynamics.In this paper,we construct a small-world network consisting of excitatory neurons and inhibitory neurons,in which the effect of electromagnetic induction that is considered by using magnetic flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling.According to our proposed network model,we investigate the effect of induced electric field generated by magnetic stimulation on the transition of bursting phase synchronization of neuronal system under electromagnetic radiation.It is shown that the intensity and frequency of the electric field can induce the transition of the network bursting phase synchronization.Moreover,we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation intensity,where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling strength.The presented results may have important implications for the theoretical study of magnetic stimulation technology,thus promoting further development of transcranial magnetic stimulation(TMS) as an effective means of treating certain neurological diseases. 展开更多
关键词 electromagnetic induction SYNCHRONIZATION stochastic resonance small-world network
下载PDF
Chronic antiepileptic drug use and functional network efficiency: A functional magnetic resonance imaging study 被引量:2
16
作者 Tamar M van Veenendaal Dominique M IJff +5 位作者 Albert P Aldenkamp Richard H C Lazeron Paul A M Hofman Anton J A de Louw Walter H Backes Jacobus F A Jansen 《World Journal of Radiology》 CAS 2017年第6期287-294,共8页
AIM To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug(AED) treatment.METHODS The relation between functional magnetic resonance-acquired brain network measures,... AIM To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug(AED) treatment.METHODS The relation between functional magnetic resonance-acquired brain network measures, AED use, and cognitive function was investigated. Three groups of patients with epilepsy with a different risk profile for developing cognitive side effects were included: A "low risk" category(lamotrigine or levetiracetam, n=16), an "intermediate risk" category(carbamazepine, oxcarbazepine, phenytoin, or valproate, n=34) and a "high risk" category(topiramate, n=5). Brain connectivity was assessed using resting state functional magnetic resonance imaging and graph theoretical network analysis. The Computerized Visual Searching Task was used to measure central information processing speed, a common cognitive side effect of AED treatment. RESULTS Central information processing speed was lower in patients taking AEDs from the intermediate and high risk categories, compared with patients from the low risk category. The effect of risk category on global efficiency was significant(P < 0.05, ANCOVA), with a significantly higher global efficiency for patient from the low category compared with the high risk category(P < 0.05, post-hoc test). Risk category had no significant effect on the clustering coefficient(ANCOVA, P > 0.2). Also no significant associations between information processing speed and global efficiency or the clustering coefficient(linear regression analysis, P > 0.15) were observed. CONCLUSION Only the four patients taking topiramate show aberrant network measures, suggesting that alterations in functional brain network organization may be only subtle and measureable in patients with more severe cognitive side effects. 展开更多
关键词 Antiepileptic drugs Cognitive side effects Brain networks Resting state Functional magnetic resonance imaging Graph analysis
下载PDF
Coherence resonance in globally coupled neuronal networks with different neuron numbers
17
作者 Ning Wei-Lian Zhang Zheng-Zhen +5 位作者 Zeng Shang-You Luo Xiao-Shu Hu Jin-Lin Zeng Shao-Wen Qiu Yi Wu Hui-Si 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期569-576,共8页
Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal ne... Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm2) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding. 展开更多
关键词 coherence resonance ion channel noise neuronal network
下载PDF
IRMIRS:Inception-ResNet-Based Network for MRI Image Super-Resolution 被引量:1
18
作者 Wazir Muhammad Zuhaibuddin Bhutto +3 位作者 Salman Masroor Murtaza Hussain Shaikh Jalal Shah Ayaz Hussain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1121-1142,共22页
Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the r... Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods. 展开更多
关键词 SUPER-RESOLUTION magnetic resonance imaging ResNet block inception block convolutional neural network deconvolution layer
下载PDF
Hyperparameter on-line learning of stochastic resonance based threshold networks
19
作者 Weijin Li Yuhao Ren Fabing Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期289-295,共7页
Aiming at training the feed-forward threshold neural network consisting of nondifferentiable activation functions, the approach of noise injection forms a stochastic resonance based threshold network that can be optim... Aiming at training the feed-forward threshold neural network consisting of nondifferentiable activation functions, the approach of noise injection forms a stochastic resonance based threshold network that can be optimized by various gradientbased optimizers. The introduction of injected noise extends the noise level into the parameter space of the designed threshold network, but leads to a highly non-convex optimization landscape of the loss function. Thus, the hyperparameter on-line learning procedure with respective to network weights and noise levels becomes of challenge. It is shown that the Adam optimizer, as an adaptive variant of stochastic gradient descent, manifests its superior learning ability in training the stochastic resonance based threshold network effectively. Experimental results demonstrate the significant improvement of performance of the designed threshold network trained by the Adam optimizer for function approximation and image classification. 展开更多
关键词 noise injection adaptive stochastic resonance threshold neural network hyperparameter learning
下载PDF
Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension
20
作者 彭擘 颜硕 +5 位作者 成大立 俞丹英 刘展维 Vladislav V.Yakovlev 袁璐琦 陈险峰 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第3期13-18,共6页
The physical concept of synthetic dimensions has recently been introduced into optics.The fundamental physics and applications are not yet fully understood,and this report explores an approach to optical neural networ... The physical concept of synthetic dimensions has recently been introduced into optics.The fundamental physics and applications are not yet fully understood,and this report explores an approach to optical neural networks using synthetic dimension in time domain,by theoretically proposing to utilize a single resonator network,where the arrival times of optical pulses are interconnected to construct a temporal synthetic dimension.The set of pulses in each roundtrip therefore provides the sites in each layer in the optical neural network,and can be linearly transformed with splitters and delay lines,including the phase modulators,when pulses circulate inside the network.Such linear transformation can be arbitrarily controlled by applied modulation phases,which serve as the building block of the neural network together with a nonlinear component for pulses.We validate the functionality of the proposed optical neural network for the deep learning purpose with examples handwritten digit recognition and optical pulse train distribution classification problems.This proof of principle computational work explores the new concept of developing a photonics-based machine learning in a single ring network using synthetic dimensions,which allows flexibility and easiness of reconfiguration with complex functionality in achieving desired optical tasks. 展开更多
关键词 network resonATOR NEURAL
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部