期刊文献+
共找到32,321篇文章
< 1 2 250 >
每页显示 20 50 100
Upsilon Constants and Their Usefulness in Planck Scale Quantum Cosmology
1
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2024年第2期167-173,共7页
This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper su... This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper summarizes the current state of quantum cosmology with respect to the Flat Space Cosmology (FSC) model. Although the FSC quantum cosmology formulae were published in 2018, they are only rearrangements and substitutions of the other assumptions into the original FSC Hubble temperature formula. In a real sense, this temperature formula was the first quantum cosmology formula developed since Hawking’s black hole temperature formula. A recent development in the last month proves that the FSC Hubble temperature formula can be derived from the Stephan-Boltzmann law. Thus, this Hubble temperature formula effectively unites some quantum developments with the general relativity model inherent in FSC. More progress towards unification in the near-future is expected. 展开更多
关键词 Quantum Cosmology Hubble constant Planck Scale Upsilon constant Flat Space Cosmology Black Holes CMB Temperature ΛCDM Cosmology Quantum Gravity Unification
下载PDF
Precise measurement of 171Yb magnetic constants for 1S_(0)–3P_(0) clock transition
2
作者 张昂 田聪聪 +5 位作者 朱强 王兵 熊德智 熊转贤 贺凌翔 吕宝龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期184-188,共5页
We present a precise measurement of171Yb magnetic constants for 1S_(0)-3P_(0) clock transition. The background magnetic field is firstly compensated to < 1 m Gs(1 Gs = 10^(-4)T) through measuring the splitting of t... We present a precise measurement of171Yb magnetic constants for 1S_(0)-3P_(0) clock transition. The background magnetic field is firstly compensated to < 1 m Gs(1 Gs = 10^(-4)T) through measuring the splitting of two π transitins of171Yb clock transition at different compensation coils currents. Then, the splitting ratios of the π and σ components of171Yb clock transition at different bias magnetic fields are measured, and the first-order Zeeman coefficient is determined to beα = 199.49(5) Hz/Gs. The second-order Zeeman shifts at various bias magnetic fields are also measured through interleaved self-comparison in which the bias magnetic fields are modulated between high and low values. The second-order Zeeman coefficient is fitted to be β =-6.09(3) Hz/m T^(2), which is consistent with the result of NIST group. 展开更多
关键词 optical lattice clock ytterbium atoms Zeeman effects magnetic constants
下载PDF
Effects of heavy metal ions Cu^(2+)/Pb^(2+)/Zn^(2+)on kinetic rate constants of struvite crystallization
3
作者 Guangyuan Chen Tong Zhou +5 位作者 Meng Zhang Zhongxiang Ding Zhikun Zhou Yuanhui Ji Haiying Tang Changsong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期10-16,共7页
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c... Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions. 展开更多
关键词 STRUVITE CRYSTALLIZATION Heavy metal ions KINETICS Kinetic modeling Kinetic rate constant
下载PDF
Unity Formulas for the Coupling Constants and the Dimensionless Physical Constants
4
作者 Stergios Pellis 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期245-294,共50页
In this paper in an elegant way will be presented the unity formulas for the coupling constants and the dimensionless physical constants. We reached the conclusion of the simple unification of the fundamental interact... In this paper in an elegant way will be presented the unity formulas for the coupling constants and the dimensionless physical constants. We reached the conclusion of the simple unification of the fundamental interactions. We will find the formulas for the Gravitational constant. It will be presented that the gravitational fine-structure constant is a simple analogy between atomic physics and cosmology. We will find the expression that connects the gravitational fine-structure constant with the four coupling constants. Perhaps the gravitational fine-structure constant is the coupling constant for the fifth force. Also will be presented the simple unification of atomic physics and cosmology. We will find the formulas for the cosmological constant and we will propose a possible solution for the cosmological parameters. Perhaps the shape of the universe is Poincare dodecahedral space. This article will be followed by the energy wave theory and the fractal space-time theory. 展开更多
关键词 Fine-Structure constant Proton To Electron Mass Ratio Dimensionless Physical constants Coupling constant Gravitational constant Avogadro’s Number Fundamental Interactions Gravitational Fine-Structure constant Cosmological constant
下载PDF
Fundamental Physical Constants and Primary Physical Parameters
5
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期190-209,共20页
Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, ... Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022. 展开更多
关键词 Classical Physics Fundamental Physical constants Electrodynamic constant Speed of Light Dirac Large Number Dimensionless Rydberg constant Newtonian constant of Gravitation Self-Consistency of Fundamental Physical constants
下载PDF
On the Fine Structure and the Other Coupling Constants at the Planck Scale
6
作者 Paolo Christillin 《Journal of Modern Physics》 CAS 2023年第5期666-669,共4页
It is shown that the fine structure constant at Planck times tends to one as well as those of the weak and strong interactions. This results by constraining them at the Planck force. That seems to provide interesting ... It is shown that the fine structure constant at Planck times tends to one as well as those of the weak and strong interactions. This results by constraining them at the Planck force. That seems to provide interesting new results which confirm that at the beginning of space time (Planck scale) all fundamental forces converge to the same unit value. 展开更多
关键词 Fine Structure constant Fundamental Interactions Coupling constants Unification at Planck Scale
下载PDF
Variable Physical Constants and Beyond
7
作者 Qinghua Cui 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期116-123,共8页
We previously revealed that the speed of light in vacuum c, the gravitational constant G, the vacuum permittivity ε, and the vacuum permeability μ can be defined by the temperature T (or the expected average frequen... We previously revealed that the speed of light in vacuum c, the gravitational constant G, the vacuum permittivity ε, and the vacuum permeability μ can be defined by the temperature T (or the expected average frequency f) of cosmic microwave background (CMB) radiation. Given that CMB is continuously cooling, that is, T is continuously decreasing, we proposed that the above “constants” are variable and their values at some space-time with CMB temperature T (c<sub>T</sub>, G<sub>T</sub>, ε<sub>T</sub>, and μ<sub>T</sub>) can be described using their values (c<sub>0</sub>, G<sub>0</sub>, ε<sub>0</sub>, and μ<sub>0</sub>) and the temperature (T<sub>0</sub>) of CMB at present space-time. Based on the above observation, a number of physical equations related with these constants are re-described in this study, including relativity equation, mass-energy equation, and Maxwell’s equations, etc. 展开更多
关键词 Speed of Light in Vacuum Gravitational constant Vacuum Permittivity Vacuum Permeability Cosmic Microwave Background
下载PDF
Autonomous Robot with Artificial Intelligence for Taking Health Constants
8
作者 Ababacar Sadikh Faye Ousmane Sow +4 位作者 Mame Andallah Diop Youssou Traore Jupiter Ndiaye Mamour Gueye Abdoulaye Diop 《Open Journal of Applied Sciences》 2023年第7期963-975,共13页
Health facilities are generally short-staffed and overworked. This has a significant impact on the reliability of the acquisition of health constants required at the start of diagnosis. Manual acquisition and transmis... Health facilities are generally short-staffed and overworked. This has a significant impact on the reliability of the acquisition of health constants required at the start of diagnosis. Manual acquisition and transmission of these constants and other data leads to delays in the execution of successive care-related tasks. What’s more, the quality of service is sometimes compromised by a lack of communication between patients and staff. In pediatrics, this is compounded by the difficulty of diagnosis in the face of children’s silence, intimidated by the hospital environment. Technological assistance would relieve healthcare staff of the need to perform certain repetitive tasks. The solution proposed in this document studies a robot, based on electrical, electronic, computer and artificial intelligence resources, with human-machine interaction for taking vitals and health data in health facilities. This system enables height, mass and temperature to be taken autonomously and without contact. The algorithm we’ve developed uses artificial intelligence to check the conditions for correct measurements, both bareheaded and barefoot. This solution also alerts you to epidemic trends such as obesity. This health data is made available in the healthcare facility on terminals such as tablets, smartphones and computers used by nursing staff. This work will help healthcare staff to take automatic health vitals without contact, and to acquire and circulate data via a computer network. 展开更多
关键词 Health constants INSTRUMENTATION MECHATRONICS ARDUINO CLOUD AI
下载PDF
ESTIMATE ON THE BLOCH CONSTANT FOR CERTAIN HARMONIC MAPPINGS UNDER A DIFFERENTIAL OPERATOR
9
作者 陈洁玲 刘名生 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期295-310,共16页
In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,... In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors. 展开更多
关键词 Bloch-Landau type theorem Bloch constant linear complex operator harmonic mapping biharmonic mapping UNIVALENT
下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
10
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries Graphite N-DOPING Electric double layer Molecular dynamics constant potential method Electrode potential
下载PDF
Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies
11
作者 Zonglin Li Zhenyu Gao Yijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2159-2175,共17页
The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models... The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement. 展开更多
关键词 Enriched boundary elements constant elements 2D acoustic problems higher frequency
下载PDF
Elementary Fermions: Strings, Planck Constant, Preons and Hypergluons
12
作者 Doron Kwiat 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期82-100,共19页
Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism ... Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin. 展开更多
关键词 FERMIONS Preons Hypergluons Strings Real Fields Planck constant INTERFERENCE SPIN
下载PDF
Gedankenexperiment for Modified ZPE and Planck’s “Constant”, h, in the Beginning of Cosmological Expansion, Partly Due to NLED
13
作者 Andrew Walcott Beckwith 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期180-184,共5页
We initially look at a non singular universe representation of entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Se... We initially look at a non singular universe representation of entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Seth Lloyd) as to what would be available initially due to a modified ZPE formalism. The ZPE formalism is modified as due to Matt Visser’s alternation of k (maximum) ~ 1/(Planck length), with a specific initial density giving rise to initial information content which may permit fixing the initial Planck’s constant, h, which is pivotal to the setting of physical law. The settings of these parameters depend upon NLED. 展开更多
关键词 ZPE Planck’s constant Gedankenexperiment NLED
下载PDF
The Extremal Universe Exact Solution from Einstein’s Field Equation Gives the Cosmological Constant Directly
14
作者 Espen Gaarder Haug 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期386-397,共12页
Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditi... Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditions. Multiple solutions have been utilized to predict cosmic scales, and among them, the Friedmann-Lemaître-Robertson-Walker solution that is the back-bone of the development into today standard model of modern cosmology: The Λ-CDM model. However, this is naturally not the only solution to Einstein’s field equation. We will investigate the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics. Interestingly, in their extremal cases, these solutions yield identical predictions for horizons and escape velocity. These solutions can be employed to formulate a new cosmological model that resembles the Friedmann equation. However, a significant distinction arises in the extremal universe solution, which does not necessitate the ad hoc insertion of the cosmological constant;instead, it emerges naturally from the derivation itself. To the best of our knowledge, all other solutions relying on the cosmological constant do so by initially ad hoc inserting it into Einstein’s field equation. This clarification unveils the true nature of the cosmological constant, suggesting that it serves as a correction factor for strong gravitational fields, accurately predicting real-world cosmological phenomena only within the extremal solutions of the discussed metrics, all derived strictly from Einstein’s field equation. 展开更多
关键词 General Relativity Theory Cosmological constant Extremal Solution Reissner-Nordström KERR Kerr-Newman
下载PDF
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
15
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 General Relativity Quantum Mechanics Space Time Dark Matter A New Fundamental constant “K”
下载PDF
The Planck Constant and Its Relation to the Compton Frequency
16
作者 Espen Gaarder Haug 《Journal of Applied Mathematics and Physics》 2024年第1期168-180,共13页
The Planck constant is considered one of the most important universal constants of physics, and despite all we know much about it, the physical nature of it has not been fully understood. Further investigation and new... The Planck constant is considered one of the most important universal constants of physics, and despite all we know much about it, the physical nature of it has not been fully understood. Further investigation and new perspectives on the Planck constant should therefore be of interest. We demonstrate that the Planck constant also can be directly linked to the Compton frequency of one, which again is divided by the Compton frequency in one kg. If this is right, it means also the Planck constant is linked to quantization of matter, not only energy. However, as we will show the frequency of one when expressed in relation to kg will be observational time dependent. This means the missing mass gap surprisingly both is equal to the Planck mass, which is larger than any known particle and also it is linked to a very small mass that again is equal to what has been suggested as the photon mass in the existing literature. This new view could be an important step forward in understanding the physical nature of the Planck constant as well as the mass gap and even the rest mass of a photon. 展开更多
关键词 Planck constant Compton Frequency ELECTRON Proton Count
下载PDF
Introducing a 2nd Universal Space-Time Constant Can Explain the Observed Age of the Universe and Dark Energy
17
作者 Herman A. van Hoeve 《World Journal of Mechanics》 2024年第2期9-22,共14页
The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ... The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years. 展开更多
关键词 Anomalistic Year Orbital Revolution Hubble Tension Age of the Universe Cosmological constant Dark Energy Cosmic Microwave Background
下载PDF
A Solution to the Cosmological Constant Problem Using the Holographic Principle (A Brief Note)
18
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2024年第2期159-166,共8页
This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem.... This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe. 展开更多
关键词 Quantum Cosmology Planck Scale Cosmological constant Black Holes Holographic Principle Flat Space Cosmology AdS-CFT ER = EPR Cosmology Model
下载PDF
DDI METHOD FOR MEASURING OPTICAL CONSTANTS OF THIN FILMS
19
作者 谷晋骐 郑永星 《Transactions of Tianjin University》 EI CAS 1997年第1期93-96,共4页
双光束双波长激光干涉(DDI)法采用自行设计的可测双波长氦氖激光器作光源,可在同一光路中通过二次测量获得薄膜样品两个波长(0.633μm,3.39μm)下的光学常数,即折射率、消光系数和厚度,文中论述了调量原理、测量... 双光束双波长激光干涉(DDI)法采用自行设计的可测双波长氦氖激光器作光源,可在同一光路中通过二次测量获得薄膜样品两个波长(0.633μm,3.39μm)下的光学常数,即折射率、消光系数和厚度,文中论述了调量原理、测量装置和测量结果. 展开更多
关键词 DDI 薄膜 光学常数
下载PDF
Effect of lens constants optimization on the accuracy of intraocular lens power calculation formulas for highly myopic eyes 被引量:6
20
作者 Jia-Qing Zhang Xu-Yuan Zou +3 位作者 Dan-Ying Zheng Wei-Rong Chen Ao Sun Li-Xia Luo 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第6期943-948,共6页
AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 conse... AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes. 展开更多
关键词 high MYOPIA CATARACT INTRAOCULAR LENS power LENS constant OPTIMIZATION prediction error
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部