A class of discontinuous penalty functions was proposed to solve constrained minimization problems with the integral approach to global optimization, m-mean value and v-variance optimality conditions of a constrained ...A class of discontinuous penalty functions was proposed to solve constrained minimization problems with the integral approach to global optimization, m-mean value and v-variance optimality conditions of a constrained and penalized minimization problem were investigated. A nonsequential algorithm was proposed. Numerical examples were given to illustrate the effectiveness of the algorithm.展开更多
In this paper, we give a solving approach based on a logarithmic-exponential multiplier penalty function for the constrained minimization problem. It is proved exact in the sense that the global optimizers of a nonlin...In this paper, we give a solving approach based on a logarithmic-exponential multiplier penalty function for the constrained minimization problem. It is proved exact in the sense that the global optimizers of a nonlinear problem are precisely the global optimizers of the logarithmic-exponential multiplier penalty problem.展开更多
We consider the problem of minimizing the average of a large number of smooth component functions over one smooth inequality constraint.We propose and analyze a stochastic Moving Balls Approximation(SMBA)method.Like s...We consider the problem of minimizing the average of a large number of smooth component functions over one smooth inequality constraint.We propose and analyze a stochastic Moving Balls Approximation(SMBA)method.Like stochastic gradient(SG)met hods,the SMBA method's iteration cost is independent of the number of component functions and by exploiting the smoothness of the constraint function,our method can be easily implemented.Theoretical and computational properties of SMBA are studied,and convergence results are established.Numerical experiments indicate that our algorithm dramatically outperforms the existing Moving Balls Approximation algorithm(MBA)for the structure of our problem.展开更多
文摘A class of discontinuous penalty functions was proposed to solve constrained minimization problems with the integral approach to global optimization, m-mean value and v-variance optimality conditions of a constrained and penalized minimization problem were investigated. A nonsequential algorithm was proposed. Numerical examples were given to illustrate the effectiveness of the algorithm.
基金This project is supported by National Natural Science Foundation of China (10971118) and the Science foundation of Shandong Province(2008BS10003)
文摘In this paper, we give a solving approach based on a logarithmic-exponential multiplier penalty function for the constrained minimization problem. It is proved exact in the sense that the global optimizers of a nonlinear problem are precisely the global optimizers of the logarithmic-exponential multiplier penalty problem.
文摘We consider the problem of minimizing the average of a large number of smooth component functions over one smooth inequality constraint.We propose and analyze a stochastic Moving Balls Approximation(SMBA)method.Like stochastic gradient(SG)met hods,the SMBA method's iteration cost is independent of the number of component functions and by exploiting the smoothness of the constraint function,our method can be easily implemented.Theoretical and computational properties of SMBA are studied,and convergence results are established.Numerical experiments indicate that our algorithm dramatically outperforms the existing Moving Balls Approximation algorithm(MBA)for the structure of our problem.