Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva...Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.展开更多
In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices ou...In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
A 2D time domain boundary element method(BEM)is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion.Coulomb friction is assumed along the contact interface.T...A 2D time domain boundary element method(BEM)is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion.Coulomb friction is assumed along the contact interface.The incident wave is assumed strong enough so that localized slip and separation take place along the interface.The present problem is in effect a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (slip,separation and stick regions).In order to determine the unknown intervals,an iterative technique is developed.As an example,we consider the scattering of a circular cylinder embedded in an infinite solid.展开更多
This paper proposes a system representation for unifying control design and numerical calculation in nonlinear optimal control problems with inequality constraints in terms of the symplectic structure. The symplectic ...This paper proposes a system representation for unifying control design and numerical calculation in nonlinear optimal control problems with inequality constraints in terms of the symplectic structure. The symplectic structure is derived from Hamiltonian systems that are equivalent to Hamilton-Jacobi equations. In the representation, the constraints can be described as an input-state transformation of the system. Therefore, it can be seamlessly applied to the stable manifold method that is a precise numerical solver of the Hamilton-Jacobi equations. In conventional methods, e.g., the penalty method or the barrier method, it is difficult to systematically assign the weights of penalty functions that are used for realizing the constraints. In the proposed method, we can separate the adjustment of weights with respect to objective functions from that of penalty functions. Furthermore, the proposed method can extend the region of computable solutions in a state space. The validity of the method is shown by a numerical example of the optimal control of a vehicle model with steering limitations.展开更多
In this paper, a truncated hybrid method is proposed and developed for solving sparse large-scale nonlinear programming problems. In the hybrid method, a symmetric system of linear equations, instead of the usual quad...In this paper, a truncated hybrid method is proposed and developed for solving sparse large-scale nonlinear programming problems. In the hybrid method, a symmetric system of linear equations, instead of the usual quadratic programming subproblems, is solved at iterative process. In order to ensure the global convergence, a method of multiplier is inserted in iterative process. A truncated solution is determined for the system of linear equations and the unconstrained subproblems are solved by the limited memory BFGS algorithm such that the hybrid algorithm is suitable to the large-scale problems. The local convergence of the hybrid algorithm is proved and some numerical tests for medium-sized truss problem are given.展开更多
Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which ...Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which agree with the results obtained by using the Dirac's method.展开更多
This paper presents a new trust-region algorithm for general nonlinear constrained optimization problems. Certain equivalent KKT conditions of the problems are derived. Global convergence of the algorithm to a first-o...This paper presents a new trust-region algorithm for general nonlinear constrained optimization problems. Certain equivalent KKT conditions of the problems are derived. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps. Numerical example is also reported.展开更多
Recently,the authors proposed a low-cost approach,named Optimization Approach for Linear Systems(OPALS)for solving any kind of a consistent linear system regarding the structure,characteristics,and dimension of the co...Recently,the authors proposed a low-cost approach,named Optimization Approach for Linear Systems(OPALS)for solving any kind of a consistent linear system regarding the structure,characteristics,and dimension of the coefficient matrix A.The results obtained by this approach for matrices with no structure and with indefinite symmetric part were encouraging when compare with other recent and well-known techniques.In this work,we proposed to extend the OPALS approach for solving the Linear Least-Squares Problem(LLSP)and the Minimum Norm Linear System Problem(MNLSP)using any iterative low-cost gradient-type method,avoiding the construction of the matrices AT A or AAT,and taking full advantage of the structure and form of the gradient of the proposed nonlinear objective function in the gradient direction.The combination of those conditions together with the choice of the initial iterate allow us to produce a novel and efficient low-cost numerical scheme for solving both problems.Moreover,the scheme presented in this work can also be used and extended for the weighted minimum norm linear systems and minimum norm linear least-squares problems.We include encouraging numerical results to illustrate the practical behavior of the proposed schemes.展开更多
文摘Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.
基金The research was supported by the State Education Grant for Retumed Scholars
文摘In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
基金Project supported by the National Natural Science Foundation of China(Nos.19872001 and 59878004)the National Natural Science Foundation for Distinguished Young Scholars(No.10025211).
文摘A 2D time domain boundary element method(BEM)is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion.Coulomb friction is assumed along the contact interface.The incident wave is assumed strong enough so that localized slip and separation take place along the interface.The present problem is in effect a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (slip,separation and stick regions).In order to determine the unknown intervals,an iterative technique is developed.As an example,we consider the scattering of a circular cylinder embedded in an infinite solid.
文摘This paper proposes a system representation for unifying control design and numerical calculation in nonlinear optimal control problems with inequality constraints in terms of the symplectic structure. The symplectic structure is derived from Hamiltonian systems that are equivalent to Hamilton-Jacobi equations. In the representation, the constraints can be described as an input-state transformation of the system. Therefore, it can be seamlessly applied to the stable manifold method that is a precise numerical solver of the Hamilton-Jacobi equations. In conventional methods, e.g., the penalty method or the barrier method, it is difficult to systematically assign the weights of penalty functions that are used for realizing the constraints. In the proposed method, we can separate the adjustment of weights with respect to objective functions from that of penalty functions. Furthermore, the proposed method can extend the region of computable solutions in a state space. The validity of the method is shown by a numerical example of the optimal control of a vehicle model with steering limitations.
文摘In this paper, a truncated hybrid method is proposed and developed for solving sparse large-scale nonlinear programming problems. In the hybrid method, a symmetric system of linear equations, instead of the usual quadratic programming subproblems, is solved at iterative process. In order to ensure the global convergence, a method of multiplier is inserted in iterative process. A truncated solution is determined for the system of linear equations and the unconstrained subproblems are solved by the limited memory BFGS algorithm such that the hybrid algorithm is suitable to the large-scale problems. The local convergence of the hybrid algorithm is proved and some numerical tests for medium-sized truss problem are given.
文摘Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which agree with the results obtained by using the Dirac's method.
基金Supported by the Scientific Research Foundation of Hunan Provincial Education Department(02B021) Hunan Provincial Natural Science Foundation,China(03JJY6002)
文摘This paper presents a new trust-region algorithm for general nonlinear constrained optimization problems. Certain equivalent KKT conditions of the problems are derived. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps. Numerical example is also reported.
文摘Recently,the authors proposed a low-cost approach,named Optimization Approach for Linear Systems(OPALS)for solving any kind of a consistent linear system regarding the structure,characteristics,and dimension of the coefficient matrix A.The results obtained by this approach for matrices with no structure and with indefinite symmetric part were encouraging when compare with other recent and well-known techniques.In this work,we proposed to extend the OPALS approach for solving the Linear Least-Squares Problem(LLSP)and the Minimum Norm Linear System Problem(MNLSP)using any iterative low-cost gradient-type method,avoiding the construction of the matrices AT A or AAT,and taking full advantage of the structure and form of the gradient of the proposed nonlinear objective function in the gradient direction.The combination of those conditions together with the choice of the initial iterate allow us to produce a novel and efficient low-cost numerical scheme for solving both problems.Moreover,the scheme presented in this work can also be used and extended for the weighted minimum norm linear systems and minimum norm linear least-squares problems.We include encouraging numerical results to illustrate the practical behavior of the proposed schemes.