To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ...To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
In this paper, the problem of minimizing a convex function subject to general linear constraints is considered. An algorithm which is an extension of the method described in [4] is presented. And a new dual simplex pr...In this paper, the problem of minimizing a convex function subject to general linear constraints is considered. An algorithm which is an extension of the method described in [4] is presented. And a new dual simplex procedure with lexicographic scheme is proposed to deal with the degenerative case in the sense that the gradients of active constraints at the iteration point are dependent. Unlike other methods, the new algorithm possesses the following important property that, at any iteration point generated by the algorithm, one can choose a set of the most suitable basis and from it one can drop all constraints which can be relaxed, not only one constraint once. This property will be helpful in decreasing the computation amount of the algorithm. The global convergence and superlinear convergence of this algorithm are proved,without any assumption of linear independence of the gradients of active constraints.展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subpro...In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.展开更多
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO ...The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.展开更多
Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired disto...Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications.In the paper,we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency.The main aim of the optimization algorithm is to obtain solutions with maximum robustness,and which should not exceed the set threshold of quality.To represent the accuracy of the proposed scheme,we employ a popular video watermarking technique(DCT domain)having frame selection and embedding method for watermarking.A squirrel search algorithm is chosen as a meta-heuristic algorithm that utilizes the stated fitness function.The results indicate that quality constraint is fulfilled,and the proposed technique gives improved robustness against different attacks with several quality thresholds.The proposed technique could be practically implemented in several multimedia applications such as the films industry,medical imagery,OOT platforms,etc.展开更多
In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and effici...In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.展开更多
We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mix...We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.展开更多
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization G...In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.展开更多
Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems....Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems.In this paper,a novel penalty function(called M-objective penalty function) with one penalty parameter added to both objective and constrained functions of inequality constrained optimization problems is proposed.Based on the M-objective penalty function,an algorithm is developed to solve an optimal solution to the inequality constrained optimization problems,with its convergence proved under some conditions.Furthermore,numerical results show that the proposed algorithm has a much better convergence than the classical penalty function algorithms under big penalty parameters,and is efficient in choosing a penalty parameter in a large range in Matlab software.展开更多
文摘To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
文摘In this paper, the problem of minimizing a convex function subject to general linear constraints is considered. An algorithm which is an extension of the method described in [4] is presented. And a new dual simplex procedure with lexicographic scheme is proposed to deal with the degenerative case in the sense that the gradients of active constraints at the iteration point are dependent. Unlike other methods, the new algorithm possesses the following important property that, at any iteration point generated by the algorithm, one can choose a set of the most suitable basis and from it one can drop all constraints which can be relaxed, not only one constraint once. This property will be helpful in decreasing the computation amount of the algorithm. The global convergence and superlinear convergence of this algorithm are proved,without any assumption of linear independence of the gradients of active constraints.
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.
基金provided by grants from National Natural Science Foundation of China (Nos.40905050,40805020,40830955)the state Key Development Program for Basic Research (Grant No.2006CB400503)the KZCX3-SW-230 of the Chinese Academy of Sciences (CAS),LASG Free Exploration Fund,and LASG State Key Laboratory Special Fund
文摘The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
文摘Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications.In the paper,we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency.The main aim of the optimization algorithm is to obtain solutions with maximum robustness,and which should not exceed the set threshold of quality.To represent the accuracy of the proposed scheme,we employ a popular video watermarking technique(DCT domain)having frame selection and embedding method for watermarking.A squirrel search algorithm is chosen as a meta-heuristic algorithm that utilizes the stated fitness function.The results indicate that quality constraint is fulfilled,and the proposed technique gives improved robustness against different attacks with several quality thresholds.The proposed technique could be practically implemented in several multimedia applications such as the films industry,medical imagery,OOT platforms,etc.
文摘In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China 10971074+1 种基金the National Basic Research Program under the Grant 2005CB321703Hunan Provincial Innovation Foundation For Postgraduate CX2009B119.
文摘We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.
基金support of the Chinese and German Research Foundations through the Sino-German Workshop on Applied Mathematics held in Hangzhou in October 2007support of the German Research Foundation through the grants DFG06-381 and DFG06-382+1 种基金support of the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grant 60474027 and 10771211
文摘In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China under Grant No.11271329
文摘Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems.In this paper,a novel penalty function(called M-objective penalty function) with one penalty parameter added to both objective and constrained functions of inequality constrained optimization problems is proposed.Based on the M-objective penalty function,an algorithm is developed to solve an optimal solution to the inequality constrained optimization problems,with its convergence proved under some conditions.Furthermore,numerical results show that the proposed algorithm has a much better convergence than the classical penalty function algorithms under big penalty parameters,and is efficient in choosing a penalty parameter in a large range in Matlab software.