We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as se...We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as semidefinite programming problems.As an application,we propose new valid linear constraints for rank-one relaxation.展开更多
In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Str...In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.展开更多
Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a noncon...Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a nonconvex quadratic objective function over one ball and two parallel linear constraints is proven to have an exact computable representation,which reformulates the original problem as a linear semidefinite program with additional linear and second-order cone constraints.In this paper,we provide exact computable representations for some more subclasses of the QCQP problem,in particular,the subclass with one secondorder cone constraint and two special linear constraints.展开更多
This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of ...This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.展开更多
In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ell...In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.展开更多
This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard im...This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard image blocks. For each noisy block, its denoised version is the best sparse positive linear combination of the blocks in the database. We formulate the problem as a constrained optimization problem such that the solution is the denoised block. Experimental results demonstrate the good performance of the proposed method over current state-of-the-art denoising methods, in terms of both objective and subjective evaluations.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos. 11001006 and 91130019/A011702)the Fund of State Key Laboratory of Software Development Environment (Grant No. SKLSDE-2011ZX-15.)
文摘We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as semidefinite programming problems.As an application,we propose new valid linear constraints for rank-one relaxation.
基金Supported by the fundamental research funds for the central universities under grant YWF-10-02-021 and by National Natural Science Foundation of China under grant 11001006 The author is very grateful to all the three anonymous referees for their constructive criticisms and useful suggestions that help to improve the paper.
文摘In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.
基金supported by US Army Research Office Grant(No.W911NF-04-D-0003)by the North Carolina State University Edward P.Fitts Fellowship and by National Natural Science Foundation of China(No.11171177)。
文摘Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a nonconvex quadratic objective function over one ball and two parallel linear constraints is proven to have an exact computable representation,which reformulates the original problem as a linear semidefinite program with additional linear and second-order cone constraints.In this paper,we provide exact computable representations for some more subclasses of the QCQP problem,in particular,the subclass with one secondorder cone constraint and two special linear constraints.
基金the National Natural Science Foundation of China(No.11101261).
文摘This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.
基金NsF of China (Grant No.60773185,10401038)Program for Beijing Excellent Talents and NSF of China (Grant No.10571134)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC05200)
文摘In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.
文摘This paper proposes a novel exemplar- based method for reducing noise in computed tomography (CT) images. In the proposed method, denoising is performed on each block with the help of a given database of standard image blocks. For each noisy block, its denoised version is the best sparse positive linear combination of the blocks in the database. We formulate the problem as a constrained optimization problem such that the solution is the denoised block. Experimental results demonstrate the good performance of the proposed method over current state-of-the-art denoising methods, in terms of both objective and subjective evaluations.