Order-preserving submatrix (OPSM) has become important in modelling biologically meaningful subspace cluster, capturing the general tendency of gene expressions across a subset of conditions. With the advance of mic...Order-preserving submatrix (OPSM) has become important in modelling biologically meaningful subspace cluster, capturing the general tendency of gene expressions across a subset of conditions. With the advance of microarray and analysis techniques, big volume of gene expression datasets and OPSM mining results are produced. OPSM query can efficiently retrieve relevant OPSMs from the huge amount of OPSM datasets. However, improving OPSM query relevancy remains a difficult task in real life exploratory data analysis processing. First, it is hard to capture subjective interestingness aspects, e.g., the analyst's expectation given her/his domain knowledge. Second, when these expectations can be declaratively specified, it is still challenging to use them during the computational process of OPSM queries. With the best of our knowledge, existing methods mainly fo- cus on batch OPSM mining, while few works involve OPSM query. To solve the above problems, the paper proposes two constrained OPSM query methods, which exploit userdefined constraints to search relevant results from two kinds of indices introduced. In this paper, extensive experiments are conducted on real datasets, and experiment results demonstrate that the multi-dimension index (cIndex) and enumerating sequence index (esIndex) based queries have better performance than brute force search.展开更多
In this paper, constrained K closest pairs query is introduced, wbich retrieves the K closest pairs satisfying the given spatial constraint from two datasets. For data sets indexed by R trees in spatial databases, thr...In this paper, constrained K closest pairs query is introduced, wbich retrieves the K closest pairs satisfying the given spatial constraint from two datasets. For data sets indexed by R trees in spatial databases, three algorithms are presented for answering this kind of query. Among of them, two-phase Range+Join and Join+Range algorithms adopt the strategy that changes the execution order of range and closest pairs queries, and constrained heap-based algorithm utilizes extended distance functions to prune search space and minimize the pruning distance. Experimental results show that constrained heap-base algorithm has better applicability and performance than two-phase algorithms.展开更多
基金The authors thank the anonymous referees for their useful comments that greatly improved the quality of the paper. This work was supported in part by the National Basic Research Program 973 of China (2012CB316203), the Natural Science Foundation of China (Grant Nos. 61033007, 61272121, 61332014, 61572367, 61332006, 61472321, and 61502390), the National High Technology Research and Development Program 863 of China (2015AA015307), the Fundational Research Funds for the Central Universities (3102015JSJ0011, 3102014JSJ0005, and 3102014JSJ0013), and the Graduate Starting Seed Fund of Northwestern Polytechnical University (Z2012128).
文摘Order-preserving submatrix (OPSM) has become important in modelling biologically meaningful subspace cluster, capturing the general tendency of gene expressions across a subset of conditions. With the advance of microarray and analysis techniques, big volume of gene expression datasets and OPSM mining results are produced. OPSM query can efficiently retrieve relevant OPSMs from the huge amount of OPSM datasets. However, improving OPSM query relevancy remains a difficult task in real life exploratory data analysis processing. First, it is hard to capture subjective interestingness aspects, e.g., the analyst's expectation given her/his domain knowledge. Second, when these expectations can be declaratively specified, it is still challenging to use them during the computational process of OPSM queries. With the best of our knowledge, existing methods mainly fo- cus on batch OPSM mining, while few works involve OPSM query. To solve the above problems, the paper proposes two constrained OPSM query methods, which exploit userdefined constraints to search relevant results from two kinds of indices introduced. In this paper, extensive experiments are conducted on real datasets, and experiment results demonstrate that the multi-dimension index (cIndex) and enumerating sequence index (esIndex) based queries have better performance than brute force search.
基金Supported by National Natural Science Foundationof China (60073045)
文摘In this paper, constrained K closest pairs query is introduced, wbich retrieves the K closest pairs satisfying the given spatial constraint from two datasets. For data sets indexed by R trees in spatial databases, three algorithms are presented for answering this kind of query. Among of them, two-phase Range+Join and Join+Range algorithms adopt the strategy that changes the execution order of range and closest pairs queries, and constrained heap-based algorithm utilizes extended distance functions to prune search space and minimize the pruning distance. Experimental results show that constrained heap-base algorithm has better applicability and performance than two-phase algorithms.