In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,...In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.展开更多
The accelerated method in solving optimization problems has always been an absorbing topic.Based on the fixedtime(FxT)stability of nonlinear dynamical systems,we provide a unified approach for designing FxT gradient f...The accelerated method in solving optimization problems has always been an absorbing topic.Based on the fixedtime(FxT)stability of nonlinear dynamical systems,we provide a unified approach for designing FxT gradient flows(FxTGFs).First,a general class of nonlinear functions in designing FxTGFs is provided.A unified method for designing first-order FxTGFs is shown under Polyak-Łjasiewicz inequality assumption,a weaker condition than strong convexity.When there exist both bounded and vanishing disturbances in the gradient flow,a specific class of nonsmooth robust FxTGFs with disturbance rejection is presented.Under the strict convexity assumption,Newton-based FxTGFs is given and further extended to solve time-varying optimization.Besides,the proposed FxTGFs are further used for solving equation-constrained optimization.Moreover,an FxT proximal gradient flow with a wide range of parameters is provided for solving nonsmooth composite optimization.To show the effectiveness of various FxTGFs,the static regret analyses for several typical FxTGFs are also provided in detail.Finally,the proposed FxTGFs are applied to solve two network problems,i.e.,the network consensus problem and solving a system linear equations,respectively,from the perspective of optimization.Particularly,by choosing component-wisely sign-preserving functions,these problems can be solved in a distributed way,which extends the existing results.The accelerated convergence and robustness of the proposed FxTGFs are validated in several numerical examples stemming from practical applications.展开更多
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop...Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.展开更多
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev...Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.展开更多
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique an...Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the con- straints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evo- lutionary population. Moreover, a new mutant strategy called "DE/rand/best/l" is constructed to generate new individuals according to the feasibility proportion ofcurrent population. Finally, the effectiveness of the pro- posed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems.展开更多
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th...A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u...Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infe...In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infeasible solutions are stored separately through two populations,which can avoid direct comparison between them. The usage of efficient information carried by the infeasible solutions will enlarge exploitation scope and strength diversity of populations. At the same time,adopting the presented concept of constraints domination to update the infeasible set may keep good variety of population and give consideration to convergence. Also the improved mutation operation is employed to further raise the diversity and convergence.The suggested algorithm is compared with 3 state- of- the- art constrained optimization algorithms on standard test problems g01- g13. Simulation results show that the presented algorithm has certain advantages than other algorithms because it can ensure good convergence accuracy while it has good robustness.展开更多
Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-obj...Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.展开更多
The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable ...The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable Algorithm Convergence of Modified Integral_Level Set Method for Global Optimization Problem. It has two characters: 1) Each phase must construct a new function which has the same global optimal value as that of primitive objective function; 2) Comparing it with (Zheng's) method, solving level set procedure is avoided. An implementable algorithm also is given and it is proved that this algorithm is convergent.展开更多
By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are prov...By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are proved in generalized convex spaces without linear structure. These theorems improve and generalize a number of important results in recent literature.展开更多
A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives...A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP.展开更多
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulat...Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions.展开更多
Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva...Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.展开更多
In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence...In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.展开更多
Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and re...Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.展开更多
In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions a...In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions and the strategy of the central path.At each iteration, only full-Newton steps are used.Finally, the favorable polynomial complexity bound for the algorithm with the small-update method is deserved, namely, O(√n log n /ε).展开更多
基金partly supported by the National Natural Science Foundation of China(62076225)。
文摘In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.
基金supported by the National Key Research and Development Program of China(2020YFA0714300)the National Natural Science Foundation of China(62003084,62203108,62073079)+3 种基金the Natural Science Foundation of Jiangsu Province of China(BK20200355)the General Joint Fund of the Equipment Advance Research Program of Ministry of Education(8091B022114)Jiangsu Province Excellent Postdoctoral Program(2022ZB131)China Postdoctoral Science Foundation(2022M720720,2023T160105).
文摘The accelerated method in solving optimization problems has always been an absorbing topic.Based on the fixedtime(FxT)stability of nonlinear dynamical systems,we provide a unified approach for designing FxT gradient flows(FxTGFs).First,a general class of nonlinear functions in designing FxTGFs is provided.A unified method for designing first-order FxTGFs is shown under Polyak-Łjasiewicz inequality assumption,a weaker condition than strong convexity.When there exist both bounded and vanishing disturbances in the gradient flow,a specific class of nonsmooth robust FxTGFs with disturbance rejection is presented.Under the strict convexity assumption,Newton-based FxTGFs is given and further extended to solve time-varying optimization.Besides,the proposed FxTGFs are further used for solving equation-constrained optimization.Moreover,an FxT proximal gradient flow with a wide range of parameters is provided for solving nonsmooth composite optimization.To show the effectiveness of various FxTGFs,the static regret analyses for several typical FxTGFs are also provided in detail.Finally,the proposed FxTGFs are applied to solve two network problems,i.e.,the network consensus problem and solving a system linear equations,respectively,from the perspective of optimization.Particularly,by choosing component-wisely sign-preserving functions,these problems can be solved in a distributed way,which extends the existing results.The accelerated convergence and robustness of the proposed FxTGFs are validated in several numerical examples stemming from practical applications.
基金supported in part by the National Key Research and Development Program of China(2022YFD2001200)the National Natural Science Foundation of China(62176238,61976237,62206251,62106230)+3 种基金China Postdoctoral Science Foundation(2021T140616,2021M692920)the Natural Science Foundation of Henan Province(222300420088)the Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT023)the Program for Science&Technology Innovation Teams in Universities of Henan Province(23IRTSTHN010).
文摘Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.
基金the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)。
文摘Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
基金Supported by National Science Foundation for Excellent Young Scholars,China(Grant No.51222502)Funds for Distinguished Young Scientists of Hunan Province,China(Grant No.14JJ1016)Major Program of National Natural Science Foundation of China(Grant No.51490662)
文摘Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the con- straints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evo- lutionary population. Moreover, a new mutant strategy called "DE/rand/best/l" is constructed to generate new individuals according to the feasibility proportion ofcurrent population. Finally, the effectiveness of the pro- posed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems.
基金supported by the National Natural Science Foundation of China (60374063)the Natural Science Basic Research Plan Project in Shaanxi Province (2006A12)+1 种基金the Science and Technology Research Project of the Educational Department in Shaanxi Province (07JK180)the Emphasis Research Plan Project of Baoji University of Arts and Science (ZK0840)
文摘A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.
基金Financial support from the National Natural Science Foundation of China (22022816, 22078358)。
文摘Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
文摘In order to improve the distribution and convergence of constrained optimization algorithms,this paper proposes a constrained optimization algorithm based on double populations. Firstly the feasible solutions and infeasible solutions are stored separately through two populations,which can avoid direct comparison between them. The usage of efficient information carried by the infeasible solutions will enlarge exploitation scope and strength diversity of populations. At the same time,adopting the presented concept of constraints domination to update the infeasible set may keep good variety of population and give consideration to convergence. Also the improved mutation operation is employed to further raise the diversity and convergence.The suggested algorithm is compared with 3 state- of- the- art constrained optimization algorithms on standard test problems g01- g13. Simulation results show that the presented algorithm has certain advantages than other algorithms because it can ensure good convergence accuracy while it has good robustness.
基金supported in part by the National Natural Science Fund for Outstanding Young Scholars of China (61922072)the National Natural Science Foundation of China (62176238, 61806179, 61876169, 61976237)+2 种基金China Postdoctoral Science Foundation (2020M682347)the Training Program of Young Backbone Teachers in Colleges and Universities in Henan Province (2020GGJS006)Henan Provincial Young Talents Lifting Project (2021HYTP007)。
文摘Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.
文摘The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable Algorithm Convergence of Modified Integral_Level Set Method for Global Optimization Problem. It has two characters: 1) Each phase must construct a new function which has the same global optimal value as that of primitive objective function; 2) Comparing it with (Zheng's) method, solving level set procedure is avoided. An implementable algorithm also is given and it is proved that this algorithm is convergent.
文摘By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are proved in generalized convex spaces without linear structure. These theorems improve and generalize a number of important results in recent literature.
基金Supported by the National Natural Science Foundation of Chi- na(61075113) the Excellent Young Teacher Foundation of Heilongjiang Province of China (1155G18) the Fundamental Research Funds for the Central Universities (HEUCFZl209)
文摘A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP.
文摘Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions.
文摘Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.
文摘In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.
文摘Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.
基金supported by the Shanghai Pujiang Program (Grant No.06PJ14039)the Science Foundation of Shanghai Municipal Commission of Education (Grant No.06NS031)
文摘In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions and the strategy of the central path.At each iteration, only full-Newton steps are used.Finally, the favorable polynomial complexity bound for the algorithm with the small-update method is deserved, namely, O(√n log n /ε).