Two constraint violation stabilization methods are presented to solve the Euler Lagrange equations of motion of a multibody system with nonholonomic constraints. Compared to the previous works, the newly devised metho...Two constraint violation stabilization methods are presented to solve the Euler Lagrange equations of motion of a multibody system with nonholonomic constraints. Compared to the previous works, the newly devised methods can deal with more complicated problems such as those with nonholonomic constraints or redundant constraints, and save the computation time. Finally a numerical simulation of a multibody system is conducted by using the methods given in this paper.展开更多
A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional con...A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.展开更多
Aiming at the problem that current geographical information systems(GIS)usually does not maintain semantic and user-defined constraints out of three consistency-constrains(third refers to topology constraint),this res...Aiming at the problem that current geographical information systems(GIS)usually does not maintain semantic and user-defined constraints out of three consistency-constrains(third refers to topology constraint),this research focuses on building an efficient spatial data management system using two constraint violation detection methods.An algorithm for constraint violation detection has been derived to maintain the error-free up-to-date spatial database.Results indicate that the developed constraint violation detection(CVD)system is more efficient compared with conventional systems.展开更多
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to pr...In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB,we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M_(QG) 〉 5.05 × 10^(14) GeV in the linearly corrected case, is from GRB 140622 A. Our constraint on MQG,although not as tight as previous results, is the safest and most reliable so far.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 19902006).
文摘Two constraint violation stabilization methods are presented to solve the Euler Lagrange equations of motion of a multibody system with nonholonomic constraints. Compared to the previous works, the newly devised methods can deal with more complicated problems such as those with nonholonomic constraints or redundant constraints, and save the computation time. Finally a numerical simulation of a multibody system is conducted by using the methods given in this paper.
文摘A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.
文摘Aiming at the problem that current geographical information systems(GIS)usually does not maintain semantic and user-defined constraints out of three consistency-constrains(third refers to topology constraint),this research focuses on building an efficient spatial data management system using two constraint violation detection methods.An algorithm for constraint violation detection has been derived to maintain the error-free up-to-date spatial database.Results indicate that the developed constraint violation detection(CVD)system is more efficient compared with conventional systems.
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
基金Supported by National Natural Science Foundation of China(11375203,11305181,11322545,11335012)Knowledge Innovation Program of The Chinese Academy of Sciences
文摘In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB,we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M_(QG) 〉 5.05 × 10^(14) GeV in the linearly corrected case, is from GRB 140622 A. Our constraint on MQG,although not as tight as previous results, is the safest and most reliable so far.