The construction industry, known for its low productivity, is increasingly utilising software and mobile apps to enhance efficiency. However, more comprehensive research is needed to understand the effectiveness of th...The construction industry, known for its low productivity, is increasingly utilising software and mobile apps to enhance efficiency. However, more comprehensive research is needed to understand the effectiveness of these technology applications. The PRISMA principles utilised a scoping review methodology to ascertain pertinent studies and extract significant findings. From 2013 onwards, articles containing data on mobile applications or software designed to enhance productivity in the construction sector were obtained from multiple databases, including Emerald Insight, Science Direct, IEEE Xplore, and Google Scholar. After evaluating 2604 articles, 30 were determined to be pertinent to the study and were subsequently analysed for the review. The review identified five key themes: effectiveness, benefits, successful implementation examples, obstacles and limitations, and a comprehensive list of software and mobile apps. In addition, 71 software and mobile apps have shown potentially how these technologies can improve communication, collaboration, project management, real-time collaboration, document management, and on-the-go project information and estimating processes in the construction industry, increasing efficiency and productivity. The findings highlight the potential of these technologies such as Automation, Radio-Frequency Identification (RFID), Building Information Modeling (BIM), Augmented Reality (AR), Virtual Reality (VR), and Internet of Things (IoT) to improve efficiency and communication in the construction industry. Despite challenges such as cost, lack of awareness, resistance to change, compatibility concerns, human resources, technological and security concerns and licensing issues, the study identifies specific mobile applications and software with the potential to enhance efficiency significantly, improve productivity and streamline workflows. The broader societal impacts of construction software and mobile app development include increased efficiency, job creation, and sustainability.展开更多
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real...Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.展开更多
The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its c...The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.展开更多
With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction ...With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction quality control are of great significance to enhance the competitiveness of construction enterprises and realize sustainable development.In this paper,the effective strategy of construction management and the effective strategy of construction quality control will be discussed in depth,aiming at providing useful management and quality control strategies for construction enterprises.展开更多
Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-fri...Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.展开更多
Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering ...Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.展开更多
In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expan...In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.展开更多
As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of con...As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.展开更多
The target of integrated construction of comprehensive transportation hub is to integrate the traffic resources,achieve butt joint of pan-regional transportation mode,and finally realize the"seamless connection&q...The target of integrated construction of comprehensive transportation hub is to integrate the traffic resources,achieve butt joint of pan-regional transportation mode,and finally realize the"seamless connection"of the goods and"zero transfer"of the passenger traffic.Relying on the particularity of the geographical location and the convenience of the Yangtze River channel,Luzhou puts forth effort to build a comprehensive transport hub in Southern Sichuan and has made great efforts in traffic infrastructure construction.However,there are still some problems.Combining practice of Luzhou,using the advanced experience of foreign and domestic cities for reference,the paper pointed out that for the sake of constructing a comprehensive transportation hub,we need to build the traffic integration on the basis of the efficiency.Besides,the paper proposed the strategies for construction.展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely...Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instr...Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instruction-brief and instruction-category, and constructing test suite. Consequently, this approach is adopted to test oven embedded system, and detail process is deeply discussed. As a result, the factual result indicates that the “instruction-category” approach can be effectively applied in embedded system testing as a black-box method for conformity testing.展开更多
In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing...In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing needs and characteristics of individuals across the lifespan,it is evident that a design approach that incorporates mixed-age integration and mutual-help communities is a viable strategy for enhancing intergenerational exchanges.This entails the creation of a diverse and open community that is conducive to habitation for individuals of all ages,encompassing the full spectrum of needs,from those of young children to the elderly.Such a community must be designed and constructed with the population in mind,from the initial planning and design stages to the operational phase.This encompasses a comprehensive range of services,including food,clothing,housing,transportation,and medical care and recreation.展开更多
Taking the changes of construction land in Wan’an County over the years as the research object,the quantity and spatial characteristics of construction land in Wan’an County were analyzed,and the overall situation a...Taking the changes of construction land in Wan’an County over the years as the research object,the quantity and spatial characteristics of construction land in Wan’an County were analyzed,and the overall situation and regional differences of construction land utilization in Wan’an County were revealed.From the aspects of main influencing factors such as land use structure,land use intensity,land input intensity and output benefit,an evaluation indicator system was established to evaluate the economical and intensive use level of construction land in Wan’an County.The results show that the score of the economical and intensive use level of construction land in Wan’an County was 56.92,which was the lowest among all the districts and counties in Ji’an City.Based on the evaluation results,the corresponding economizing and intensive strategies were put forward,and the safeguard measures for its implementation were explored.The purpose is to provide some support for the preparation of territorial spatial planning,the delineation of urban development boundaries,and the potential exploitation of construction land stock,hoping to improve the utilization efficiency and benefit of construction land in Wan’an County,and promote the economic growth of Wan’an County to the stage of high-quality development.展开更多
Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing tec...Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.展开更多
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in ...Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.展开更多
Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarize...Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.展开更多
Cochin Port is an all-weather port situated within a protected natural harbour,just 11 km away from mainland shipping route.Total draft of 15m-16m is available and it is a natural choice for setting up transhipment hu...Cochin Port is an all-weather port situated within a protected natural harbour,just 11 km away from mainland shipping route.Total draft of 15m-16m is available and it is a natural choice for setting up transhipment hub.The International Container Transhipment Terminal(ICTT)at Vallarpadam was developed by DP World and M/s Cochin Port Trust(CPT).As a part of this project,the new Rail connectivity from ICTT at Vallarpadam to Idappalli station is 8.60km,including the construction of 4.62 km elevated bridge was awarded to AFCONS by M/s Rail Vikas Nigam Limited(RVNL),in 2007 with a scheduled completion by 2009.This bridge is constructed for single railway track and piling was done for the provision of a second railway track in future.The 4.62 km long bridge was successfully completed and Trial Loco run was done in March 2010.This paper includes details of sub-surface profile,engineering properties of soils,details of construction of pile foundations and Challenges faced during construction.展开更多
文摘The construction industry, known for its low productivity, is increasingly utilising software and mobile apps to enhance efficiency. However, more comprehensive research is needed to understand the effectiveness of these technology applications. The PRISMA principles utilised a scoping review methodology to ascertain pertinent studies and extract significant findings. From 2013 onwards, articles containing data on mobile applications or software designed to enhance productivity in the construction sector were obtained from multiple databases, including Emerald Insight, Science Direct, IEEE Xplore, and Google Scholar. After evaluating 2604 articles, 30 were determined to be pertinent to the study and were subsequently analysed for the review. The review identified five key themes: effectiveness, benefits, successful implementation examples, obstacles and limitations, and a comprehensive list of software and mobile apps. In addition, 71 software and mobile apps have shown potentially how these technologies can improve communication, collaboration, project management, real-time collaboration, document management, and on-the-go project information and estimating processes in the construction industry, increasing efficiency and productivity. The findings highlight the potential of these technologies such as Automation, Radio-Frequency Identification (RFID), Building Information Modeling (BIM), Augmented Reality (AR), Virtual Reality (VR), and Internet of Things (IoT) to improve efficiency and communication in the construction industry. Despite challenges such as cost, lack of awareness, resistance to change, compatibility concerns, human resources, technological and security concerns and licensing issues, the study identifies specific mobile applications and software with the potential to enhance efficiency significantly, improve productivity and streamline workflows. The broader societal impacts of construction software and mobile app development include increased efficiency, job creation, and sustainability.
文摘Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.
基金Sponsored by Germplasm Collection and Conservation Project for the Forest and Grass Germplasm Resources in Anhui Province in 2024(hxkt2024111)Science and Technology Plan Project of Huangshan(2022KN-02)+1 种基金Humanities and Social Sciences Research Project of Anhui Higher Education Institutions(SKHS2019B07)Key School-level Project of Huangshan University(2022xkjzd004).
文摘The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.
文摘With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction quality control are of great significance to enhance the competitiveness of construction enterprises and realize sustainable development.In this paper,the effective strategy of construction management and the effective strategy of construction quality control will be discussed in depth,aiming at providing useful management and quality control strategies for construction enterprises.
文摘Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.
文摘Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.
文摘In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.
文摘As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.
文摘The target of integrated construction of comprehensive transportation hub is to integrate the traffic resources,achieve butt joint of pan-regional transportation mode,and finally realize the"seamless connection"of the goods and"zero transfer"of the passenger traffic.Relying on the particularity of the geographical location and the convenience of the Yangtze River channel,Luzhou puts forth effort to build a comprehensive transport hub in Southern Sichuan and has made great efforts in traffic infrastructure construction.However,there are still some problems.Combining practice of Luzhou,using the advanced experience of foreign and domestic cities for reference,the paper pointed out that for the sake of constructing a comprehensive transportation hub,we need to build the traffic integration on the basis of the efficiency.Besides,the paper proposed the strategies for construction.
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金supported by the National Natural Science Foundation of China(52130801,U20A20312,52178271,and 52077213)the National Key Research and Development Program of China(2021YFF0500903)。
文摘Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
文摘Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instruction-brief and instruction-category, and constructing test suite. Consequently, this approach is adopted to test oven embedded system, and detail process is deeply discussed. As a result, the factual result indicates that the “instruction-category” approach can be effectively applied in embedded system testing as a black-box method for conformity testing.
文摘In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing needs and characteristics of individuals across the lifespan,it is evident that a design approach that incorporates mixed-age integration and mutual-help communities is a viable strategy for enhancing intergenerational exchanges.This entails the creation of a diverse and open community that is conducive to habitation for individuals of all ages,encompassing the full spectrum of needs,from those of young children to the elderly.Such a community must be designed and constructed with the population in mind,from the initial planning and design stages to the operational phase.This encompasses a comprehensive range of services,including food,clothing,housing,transportation,and medical care and recreation.
文摘Taking the changes of construction land in Wan’an County over the years as the research object,the quantity and spatial characteristics of construction land in Wan’an County were analyzed,and the overall situation and regional differences of construction land utilization in Wan’an County were revealed.From the aspects of main influencing factors such as land use structure,land use intensity,land input intensity and output benefit,an evaluation indicator system was established to evaluate the economical and intensive use level of construction land in Wan’an County.The results show that the score of the economical and intensive use level of construction land in Wan’an County was 56.92,which was the lowest among all the districts and counties in Ji’an City.Based on the evaluation results,the corresponding economizing and intensive strategies were put forward,and the safeguard measures for its implementation were explored.The purpose is to provide some support for the preparation of territorial spatial planning,the delineation of urban development boundaries,and the potential exploitation of construction land stock,hoping to improve the utilization efficiency and benefit of construction land in Wan’an County,and promote the economic growth of Wan’an County to the stage of high-quality development.
基金supported by the National Natural Science Foundation of China(42241109)the Guoqiang Institute,Tsinghua University(2021GQG1001)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.
基金funded by the National Natural Science Foundation of China under the project“Research on Urban Spatial Coupling Mechanism Between Urban Epidemic Spreading and Vulnerability and Planning Response in Chengdu-Chongqing Area”(Grant No.52078423)the Major Program of Sichuan Provincial Scientific Research under the Project“Research and Demonstration of Resilient Collaborative Planning and Design for Park Cities”(Grant No.2020YFS0054)the Sichuan Provincial Science and Technology Innovation Platform and Talent Plan"Research on the Construction and Development Strategies of Several Major Infrastructure Systems for New Smart Cities"(Grant No.2022JDR0356).
文摘Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.
文摘Cochin Port is an all-weather port situated within a protected natural harbour,just 11 km away from mainland shipping route.Total draft of 15m-16m is available and it is a natural choice for setting up transhipment hub.The International Container Transhipment Terminal(ICTT)at Vallarpadam was developed by DP World and M/s Cochin Port Trust(CPT).As a part of this project,the new Rail connectivity from ICTT at Vallarpadam to Idappalli station is 8.60km,including the construction of 4.62 km elevated bridge was awarded to AFCONS by M/s Rail Vikas Nigam Limited(RVNL),in 2007 with a scheduled completion by 2009.This bridge is constructed for single railway track and piling was done for the provision of a second railway track in future.The 4.62 km long bridge was successfully completed and Trial Loco run was done in March 2010.This paper includes details of sub-surface profile,engineering properties of soils,details of construction of pile foundations and Challenges faced during construction.