BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati...The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.展开更多
BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological ...BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.展开更多
China,recognized as the world’s largest developing nation,displays considerably lower per capita consumption of dietary supplements in comparison to Asian nations such as Japan and South Korea.However,in recent years...China,recognized as the world’s largest developing nation,displays considerably lower per capita consumption of dietary supplements in comparison to Asian nations such as Japan and South Korea.However,in recent years,there has been a substantial surge in health consciousness among the Chinese populace.This trend is not confined to the middle-aged and elderly;even younger consumer demographics are exhibiting increased health awareness.Consequently,the target demographic for dietary supplements is transitioning towards a younger demographic.Within the Chinese dietary supplement industry,vitamin C has consistently held the largest market share,commanding a broad consumer base.This underscores the substantial role of vitamin C in the dietary supplement sector.In response to the trend towards a younger target demographic in the dietary supplement industry,adjustments are required to accommodate the preferences of this younger consumer group.This research,guided by Norman’s emotional design framework,executed a survey of over 200 respondents to investigate the preferences of Generation Z consumers in China.The research encompassed packaging,product forms,and brand imagery,corresponding to the emotional design’s visceral,behavioral,and reflective layers,with a primary focus on optimally meeting the emotional needs of Generation Z.The findings indicated that consumers favor products in capsule form,packaged in zip-lock.The predominant color scheme is clean white,accented by vibrant orange elements,while emphasizing the product’s health and scientific attributes.This study offers valuable insights for the continued evolution of the vitamin C dietary supplement market in China.展开更多
BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitiv...BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitive function,anxiety,and depression in patients undergoing this procedure.AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function,anxiety,depression,and organ function in patients undergoing radical resection of gastric cancer.METHODS A total of 80 patients were involved in this research.The subjects were divided into two groups:Propofol group and sevoflurane group.The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment(LOTCA),and anxiety and depression were assessed with the aid of the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Hemodynamic indicators,oxidative stress levels,and pulmonary function were also measured.RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group.Additionally,the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group.The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group.Moreover,the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group.CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer.Propofol anesthesia has a minimal effect on patients'pulmonary function,consequently enhancing their postoperative recovery.Sevoflurane anesthesia causes less impairment on patients'cognitive function and mitigates negative emotions,leading to an improved postoperative mental state.Therefore,the selection of anesthetic agents should be based on the individual patient's specific circumstances.展开更多
Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of sui...Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of suicide.Psychological,social,family,individual,and environmental factors are important risk factors for suicidal behavior among teenagers and may contribute to suicide risk through various direct,indirect,or combined pathways.Social-emotional learning is considered a powerful intervention measure for addressing the crisis of adolescent suicide.When deliberately cultivated,fostered,and enhanced,selfawareness,self-management,social awareness,interpersonal skills,and responsible decision-making,as the five core competencies of social-emotional learning,can be used to effectively target various risk factors for adolescent suicide and provide necessary mental and interpersonal support.Among numerous suicide intervention methods,school-based interventions based on social-emotional competence have shown great potential in preventing and addressing suicide risk factors in adolescents.The characteristics of school-based interventions based on social-emotional competence,including their appropriateness,necessity,cost-effectiveness,comprehensiveness,and effectiveness,make these interventions an important means of addressing the crisis of adolescent suicide.To further determine the potential of school-based interventions based on social-emotional competence and better address the issue of adolescent suicide,additional financial support should be provided,the combination of socialemotional learning and other suicide prevention programs within schools should be fully leveraged,and cooperation between schools and families,society,and other environments should be maximized.These efforts should be considered future research directions.展开更多
BACKGROUND Delirium is a neuropsychiatric syndrome characterized by acute disturbances of consciousness with rapid onset,rapid progression,obvious fluctuations,and preventable,reversible,and other characteristics.Pati...BACKGROUND Delirium is a neuropsychiatric syndrome characterized by acute disturbances of consciousness with rapid onset,rapid progression,obvious fluctuations,and preventable,reversible,and other characteristics.Patients with delirium in the intensive care unit(ICU)are often missed or misdiagnosed and do not receive adequate attention.AIM To analyze the risk factors for delirium in ICU patients and explore the applica-tion of emotional nursing with pain nursing in the management of delirium.METHODS General data of 301 critically ill patients were retrospectively collected,including histories(cardiovascular and cerebrovascular diseases,hypertension,smoking,alcoholism,and diabetes),age,sex,diagnosis,whether surgery was performed,and patient origin(emergency/clinic).Additionally,the duration of sedation,Richmond Agitation Sedation Scale score,combined emotional and pain care,ven-tilator use duration,vasoactive drug use,drainage tube retention,ICU stay du-ration,C-reactive protein,procalcitonin,white blood cell count,body tempe-rature,Acute Physiology and Chronic Health Evaluation II(APACHE II)score,and Sequential Organ Failure Assessment score were recorded within 24 h after ICU admission.Patients were assessed for delirium according to confusion assessment method for the ICU,and univariate and multivariate logistic regre-ssion analyses were performed to identify the risk factors for delirium in the patients.RESULTS Univariate logistic regression analysis was performed on the 24 potential risk factors associated with delirium in ICU patients.The results showed that 16 risk factors were closely related to delirium,including combined emotional and pain care,history of diabetes,and patient origin.Multivariate logistic regression analysis revealed that no combined emotional and pain care,history of diabetes,emergency source,surgery,long stay in the ICU,smoking history,and high APACHE II score were independent risk factors for de-lirium in ICU patients.CONCLUSION Patients with diabetes and/or smoking history,postoperative patients,patients with a high APACHE II score,and those with emergency ICU admission need emotional and pain care,flexible visiting modes,and early intervention to reduce delirium incidence.展开更多
Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on han...Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets,recent strides in artificial intelligence and deep learning(DL)have ushered in more sophisticated approaches.The research aims to develop a FER system using a Faster Region Convolutional Neural Network(FRCNN)and design a specialized FRCNN architecture tailored for facial emotion recognition,leveraging its ability to capture spatial hierarchies within localized regions of facial features.The proposed work enhances the accuracy and efficiency of facial emotion recognition.The proposed work comprises twomajor key components:Inception V3-based feature extraction and FRCNN-based emotion categorization.Extensive experimentation on Kaggle datasets validates the effectiveness of the proposed strategy,showcasing the FRCNN approach’s resilience and accuracy in identifying and categorizing facial expressions.The model’s overall performance metrics are compelling,with an accuracy of 98.4%,precision of 97.2%,and recall of 96.31%.This work introduces a perceptive deep learning-based FER method,contributing to the evolving landscape of emotion recognition technologies.The high accuracy and resilience demonstrated by the FRCNN approach underscore its potential for real-world applications.This research advances the field of FER and presents a compelling case for the practicality and efficacy of deep learning models in automating the understanding of facial emotions.展开更多
In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square success...In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.展开更多
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an...Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed.展开更多
BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones...BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones,elevated blood sugar levels,and enhanced insulin resistance,which in turn increases the risk of AP and significantly affects the patient's quality of life.Therefore,exploring the intervention effects of narrative nursing programs on the negative emotions of patients with AP is not only helpful in alleviating psychological stress and improving quality of life but also has significant implications for improving disease outcomes and prognosis.AIM To construct a narrative nursing model for negative emotions in patients with AP and verify its efficacy in application.METHODS Through Delphi expert consultation,a narrative nursing model for negative emotions in patients with AP was constructed.A non-randomized quasi-experimental study design was used in this study.A total of 92 patients with AP with negative emotions admitted to a tertiary hospital in Nantong City of Jiangsu Province,China from September 2022 to August 2023 were recruited by convenience sampling,among whom 46 patients admitted from September 2022 to February 2023 were included in the observation group,and 46 patients from March to August 2023 were selected as control group.The observation group received narrative nursing plan,while the control group was given with routine nursing.Self-rating anxiety scale(SAS),self-rating depression scale(SDS),positive and negative affect scale(PANAS),caring behavior scale,patient satisfaction scale and 36-item short form health survey questionnaire(SF-36)were used to evaluate their emotions,satisfaction and caring behaviors in the two groups on the day of discharge,1-and 3-month following discharge.RESULTS According to the inclusion and exclusion criteria,a total of 45 cases in the intervention group and 44 cases in the control group eventually recruited and completed in the study.On the day of discharge,the intervention group showed significantly lower scores of SAS,SDS and negative emotion(28.57±4.52 vs 17.4±4.44,P<0.001),whereas evidently higher outcomes in the positive emotion score,Caring behavior scale score and satisfaction score compared to the control group(P<0.05).Repeated measurement analysis of variance showed that significant between-group differences were found in time effect,inter-group effect and interaction effect of SAS and PANAS scores as well as in time effect and inter-group effect of SF-36 scores(P<0.05);the SF-36 scores of two groups at 3 months after discharge were higher than those at 1 month after discharge(P<0.05).CONCLUSION The application of narrative nursing protocols has demonstrated significant effectiveness in alleviating anxiety,ameliorating negative emotions,and enhancing satisfaction among patients with AP.展开更多
Introduction: Emotional intelligence, or the capacity to cope one’s emotions, makes it simpler to form good connections with others and do caring duties. Nursing students can enroll a health team in a helpful and ben...Introduction: Emotional intelligence, or the capacity to cope one’s emotions, makes it simpler to form good connections with others and do caring duties. Nursing students can enroll a health team in a helpful and beneficial way with the use of emotional intelligence. Nurses who can identify, control, and interpret both their own emotions and those of their patients provide better patient care. The purpose of this study was to assess the emotional intelligence and to investigate the relationship and differences between emotional intelligence and demographic characteristics of nursing students. Methods: A cross-sectional study was carried out on 381 nursing students. Data collection was completed by “Schutte Self Report Emotional Intelligence Test”. Data were analyzed with the Statistical Package for Social Science. An independent t test, ANOVA, and Pearson correlation, multiple linear regression were used. Results: The results revealed that the emotional intelligence mean was 143.1 ± 21.6 (ranging from 33 to 165), which is high. Also, the analysis revealed that most of the participants 348 (91.3%) had higher emotional intelligence level. This finding suggests that nursing students are emotionally intelligent and may be able to notice, analyze, control, manage, and harness emotion in an adaptive manner. Also, academic year of nursing students was a predictor of emotional intelligence. Furthermore, there was positive relationship between the age and emotional intelligence (p < 0.05). The students’ ability to use their EI increased as they rose through the nursing grades. Conclusion: This study confirmed that the emotional intelligence score of the nursing students was high. Also, academic year of nursing students was a predictor of emotional intelligence. In addition, a positive relationship was confirmed between the emotional intelligence and age of nursing students. .展开更多
In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psycho...In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psychological stress and their emotions will rapidly spread to others.This paper establishes the attack-escape evacuation simulation model(AEES-SFM),based on the social force model,to consider emotion spreading under attack.In this model,(1)the attack-escape driving force is considered for the interaction between an attacker and evacuees and(2)emotion spreading among the evacuees is considered to modify the value of the psychological force.To validate the simulation,several experiments were carried out at a university in China.Comparing the simulation and experimental results,it is found that the simulation results are similar to the experimental results when considering emotion spreading.Therefore,the AEES-SFM is proved to be effective.By comparing the results of the evacuation simulation without emotion spreading,the emotion spreading model reduces the evacuation time and the number of casualties by about 30%,which is closer to the real experimental results.The results are still applicable in the case of a 40-person evacuation.This paper provides theoretical support and practical guidance for campus response to violent attacks.展开更多
During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,...During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclusions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics.展开更多
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext...Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.展开更多
In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect anal...In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.展开更多
This editorial comments on an article recently published by López del Hoyo et al.The metaverse,hailed as"the successor to the mobile Internet",is undoubtedly one of the most fashionable terms in recent ...This editorial comments on an article recently published by López del Hoyo et al.The metaverse,hailed as"the successor to the mobile Internet",is undoubtedly one of the most fashionable terms in recent years.Although metaverse development is a complex and multifaceted evolutionary process influenced by many factors,it is almost certain that it will significantly impact our lives,including mental health services.Like any other technological advancements,the metaverse era presents a double-edged sword for mental health work,which must clearly understand the needs and transformations of its target audience.In this editorial,our primary focus is to contemplate potential new needs and transformation in mental health work during the metaverse era from the pers-pective of multimodal emotion recognition.展开更多
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
文摘The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.
基金Supported by Beijing Ditan Hospital Affiliated to Capital Medical University“Sailing Plan”,No.DTQH-202405.
文摘BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.
文摘China,recognized as the world’s largest developing nation,displays considerably lower per capita consumption of dietary supplements in comparison to Asian nations such as Japan and South Korea.However,in recent years,there has been a substantial surge in health consciousness among the Chinese populace.This trend is not confined to the middle-aged and elderly;even younger consumer demographics are exhibiting increased health awareness.Consequently,the target demographic for dietary supplements is transitioning towards a younger demographic.Within the Chinese dietary supplement industry,vitamin C has consistently held the largest market share,commanding a broad consumer base.This underscores the substantial role of vitamin C in the dietary supplement sector.In response to the trend towards a younger target demographic in the dietary supplement industry,adjustments are required to accommodate the preferences of this younger consumer group.This research,guided by Norman’s emotional design framework,executed a survey of over 200 respondents to investigate the preferences of Generation Z consumers in China.The research encompassed packaging,product forms,and brand imagery,corresponding to the emotional design’s visceral,behavioral,and reflective layers,with a primary focus on optimally meeting the emotional needs of Generation Z.The findings indicated that consumers favor products in capsule form,packaged in zip-lock.The predominant color scheme is clean white,accented by vibrant orange elements,while emphasizing the product’s health and scientific attributes.This study offers valuable insights for the continued evolution of the vitamin C dietary supplement market in China.
文摘BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitive function,anxiety,and depression in patients undergoing this procedure.AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function,anxiety,depression,and organ function in patients undergoing radical resection of gastric cancer.METHODS A total of 80 patients were involved in this research.The subjects were divided into two groups:Propofol group and sevoflurane group.The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment(LOTCA),and anxiety and depression were assessed with the aid of the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Hemodynamic indicators,oxidative stress levels,and pulmonary function were also measured.RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group.Additionally,the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group.The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group.Moreover,the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group.CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer.Propofol anesthesia has a minimal effect on patients'pulmonary function,consequently enhancing their postoperative recovery.Sevoflurane anesthesia causes less impairment on patients'cognitive function and mitigates negative emotions,leading to an improved postoperative mental state.Therefore,the selection of anesthetic agents should be based on the individual patient's specific circumstances.
文摘Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of suicide.Psychological,social,family,individual,and environmental factors are important risk factors for suicidal behavior among teenagers and may contribute to suicide risk through various direct,indirect,or combined pathways.Social-emotional learning is considered a powerful intervention measure for addressing the crisis of adolescent suicide.When deliberately cultivated,fostered,and enhanced,selfawareness,self-management,social awareness,interpersonal skills,and responsible decision-making,as the five core competencies of social-emotional learning,can be used to effectively target various risk factors for adolescent suicide and provide necessary mental and interpersonal support.Among numerous suicide intervention methods,school-based interventions based on social-emotional competence have shown great potential in preventing and addressing suicide risk factors in adolescents.The characteristics of school-based interventions based on social-emotional competence,including their appropriateness,necessity,cost-effectiveness,comprehensiveness,and effectiveness,make these interventions an important means of addressing the crisis of adolescent suicide.To further determine the potential of school-based interventions based on social-emotional competence and better address the issue of adolescent suicide,additional financial support should be provided,the combination of socialemotional learning and other suicide prevention programs within schools should be fully leveraged,and cooperation between schools and families,society,and other environments should be maximized.These efforts should be considered future research directions.
文摘BACKGROUND Delirium is a neuropsychiatric syndrome characterized by acute disturbances of consciousness with rapid onset,rapid progression,obvious fluctuations,and preventable,reversible,and other characteristics.Patients with delirium in the intensive care unit(ICU)are often missed or misdiagnosed and do not receive adequate attention.AIM To analyze the risk factors for delirium in ICU patients and explore the applica-tion of emotional nursing with pain nursing in the management of delirium.METHODS General data of 301 critically ill patients were retrospectively collected,including histories(cardiovascular and cerebrovascular diseases,hypertension,smoking,alcoholism,and diabetes),age,sex,diagnosis,whether surgery was performed,and patient origin(emergency/clinic).Additionally,the duration of sedation,Richmond Agitation Sedation Scale score,combined emotional and pain care,ven-tilator use duration,vasoactive drug use,drainage tube retention,ICU stay du-ration,C-reactive protein,procalcitonin,white blood cell count,body tempe-rature,Acute Physiology and Chronic Health Evaluation II(APACHE II)score,and Sequential Organ Failure Assessment score were recorded within 24 h after ICU admission.Patients were assessed for delirium according to confusion assessment method for the ICU,and univariate and multivariate logistic regre-ssion analyses were performed to identify the risk factors for delirium in the patients.RESULTS Univariate logistic regression analysis was performed on the 24 potential risk factors associated with delirium in ICU patients.The results showed that 16 risk factors were closely related to delirium,including combined emotional and pain care,history of diabetes,and patient origin.Multivariate logistic regression analysis revealed that no combined emotional and pain care,history of diabetes,emergency source,surgery,long stay in the ICU,smoking history,and high APACHE II score were independent risk factors for de-lirium in ICU patients.CONCLUSION Patients with diabetes and/or smoking history,postoperative patients,patients with a high APACHE II score,and those with emergency ICU admission need emotional and pain care,flexible visiting modes,and early intervention to reduce delirium incidence.
文摘Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets,recent strides in artificial intelligence and deep learning(DL)have ushered in more sophisticated approaches.The research aims to develop a FER system using a Faster Region Convolutional Neural Network(FRCNN)and design a specialized FRCNN architecture tailored for facial emotion recognition,leveraging its ability to capture spatial hierarchies within localized regions of facial features.The proposed work enhances the accuracy and efficiency of facial emotion recognition.The proposed work comprises twomajor key components:Inception V3-based feature extraction and FRCNN-based emotion categorization.Extensive experimentation on Kaggle datasets validates the effectiveness of the proposed strategy,showcasing the FRCNN approach’s resilience and accuracy in identifying and categorizing facial expressions.The model’s overall performance metrics are compelling,with an accuracy of 98.4%,precision of 97.2%,and recall of 96.31%.This work introduces a perceptive deep learning-based FER method,contributing to the evolving landscape of emotion recognition technologies.The high accuracy and resilience demonstrated by the FRCNN approach underscore its potential for real-world applications.This research advances the field of FER and presents a compelling case for the practicality and efficacy of deep learning models in automating the understanding of facial emotions.
文摘In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed.
文摘BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones,elevated blood sugar levels,and enhanced insulin resistance,which in turn increases the risk of AP and significantly affects the patient's quality of life.Therefore,exploring the intervention effects of narrative nursing programs on the negative emotions of patients with AP is not only helpful in alleviating psychological stress and improving quality of life but also has significant implications for improving disease outcomes and prognosis.AIM To construct a narrative nursing model for negative emotions in patients with AP and verify its efficacy in application.METHODS Through Delphi expert consultation,a narrative nursing model for negative emotions in patients with AP was constructed.A non-randomized quasi-experimental study design was used in this study.A total of 92 patients with AP with negative emotions admitted to a tertiary hospital in Nantong City of Jiangsu Province,China from September 2022 to August 2023 were recruited by convenience sampling,among whom 46 patients admitted from September 2022 to February 2023 were included in the observation group,and 46 patients from March to August 2023 were selected as control group.The observation group received narrative nursing plan,while the control group was given with routine nursing.Self-rating anxiety scale(SAS),self-rating depression scale(SDS),positive and negative affect scale(PANAS),caring behavior scale,patient satisfaction scale and 36-item short form health survey questionnaire(SF-36)were used to evaluate their emotions,satisfaction and caring behaviors in the two groups on the day of discharge,1-and 3-month following discharge.RESULTS According to the inclusion and exclusion criteria,a total of 45 cases in the intervention group and 44 cases in the control group eventually recruited and completed in the study.On the day of discharge,the intervention group showed significantly lower scores of SAS,SDS and negative emotion(28.57±4.52 vs 17.4±4.44,P<0.001),whereas evidently higher outcomes in the positive emotion score,Caring behavior scale score and satisfaction score compared to the control group(P<0.05).Repeated measurement analysis of variance showed that significant between-group differences were found in time effect,inter-group effect and interaction effect of SAS and PANAS scores as well as in time effect and inter-group effect of SF-36 scores(P<0.05);the SF-36 scores of two groups at 3 months after discharge were higher than those at 1 month after discharge(P<0.05).CONCLUSION The application of narrative nursing protocols has demonstrated significant effectiveness in alleviating anxiety,ameliorating negative emotions,and enhancing satisfaction among patients with AP.
文摘Introduction: Emotional intelligence, or the capacity to cope one’s emotions, makes it simpler to form good connections with others and do caring duties. Nursing students can enroll a health team in a helpful and beneficial way with the use of emotional intelligence. Nurses who can identify, control, and interpret both their own emotions and those of their patients provide better patient care. The purpose of this study was to assess the emotional intelligence and to investigate the relationship and differences between emotional intelligence and demographic characteristics of nursing students. Methods: A cross-sectional study was carried out on 381 nursing students. Data collection was completed by “Schutte Self Report Emotional Intelligence Test”. Data were analyzed with the Statistical Package for Social Science. An independent t test, ANOVA, and Pearson correlation, multiple linear regression were used. Results: The results revealed that the emotional intelligence mean was 143.1 ± 21.6 (ranging from 33 to 165), which is high. Also, the analysis revealed that most of the participants 348 (91.3%) had higher emotional intelligence level. This finding suggests that nursing students are emotionally intelligent and may be able to notice, analyze, control, manage, and harness emotion in an adaptive manner. Also, academic year of nursing students was a predictor of emotional intelligence. Furthermore, there was positive relationship between the age and emotional intelligence (p < 0.05). The students’ ability to use their EI increased as they rose through the nursing grades. Conclusion: This study confirmed that the emotional intelligence score of the nursing students was high. Also, academic year of nursing students was a predictor of emotional intelligence. In addition, a positive relationship was confirmed between the emotional intelligence and age of nursing students. .
基金Project supported by the National Natural Science Foundation of China(Grant No.72274208)。
文摘In recent years,attacks against crowded places such as campuses and theaters have had a frequent and negative impact on the security and stability of society.In such an event,the crowd will be subjected to high psychological stress and their emotions will rapidly spread to others.This paper establishes the attack-escape evacuation simulation model(AEES-SFM),based on the social force model,to consider emotion spreading under attack.In this model,(1)the attack-escape driving force is considered for the interaction between an attacker and evacuees and(2)emotion spreading among the evacuees is considered to modify the value of the psychological force.To validate the simulation,several experiments were carried out at a university in China.Comparing the simulation and experimental results,it is found that the simulation results are similar to the experimental results when considering emotion spreading.Therefore,the AEES-SFM is proved to be effective.By comparing the results of the evacuation simulation without emotion spreading,the emotion spreading model reduces the evacuation time and the number of casualties by about 30%,which is closer to the real experimental results.The results are still applicable in the case of a 40-person evacuation.This paper provides theoretical support and practical guidance for campus response to violent attacks.
基金partially supported by the National Natural Science Foundation of China(Grant No.72174121)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai(Grant No.21ZR1444100)。
文摘During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclusions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics.
文摘Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.
基金the Science and Technology Project of State Grid Corporation of China under Grant No.5700-202318292A-1-1-ZN.
文摘In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.
基金Supported by Education and Teaching Reform Project of the First Clinical College of Chongqing Medical University,No.CMER202305Natural Science Foundation of Tibet Autonomous Region,No.XZ2024ZR-ZY100(Z).
文摘This editorial comments on an article recently published by López del Hoyo et al.The metaverse,hailed as"the successor to the mobile Internet",is undoubtedly one of the most fashionable terms in recent years.Although metaverse development is a complex and multifaceted evolutionary process influenced by many factors,it is almost certain that it will significantly impact our lives,including mental health services.Like any other technological advancements,the metaverse era presents a double-edged sword for mental health work,which must clearly understand the needs and transformations of its target audience.In this editorial,our primary focus is to contemplate potential new needs and transformation in mental health work during the metaverse era from the pers-pective of multimodal emotion recognition.