Background The prevalence of dermatophytoses and the development of new antifungal agents has focused interest on susceptibility tests of dermatophytes. The method used universally for susceptibility tests of dermatop...Background The prevalence of dermatophytoses and the development of new antifungal agents has focused interest on susceptibility tests of dermatophytes. The method used universally for susceptibility tests of dermatophytes was published as document (M38-A) in 2002 by the Clinical and Laboratory Standards Institute (CLSI), dealing with the standardization of susceptibility tests in filamentous fungi, though not including dermatophytes especially. However, it is not a very practical method for the clinical laboratory in routine susceptibility testing. In this test, we developed a novel rapid susceptibility assay --glucose consumption method (GCM) for dermatophytes. Methods In this study, we investigated the antifungal susceptibilities of dermatophytes to itraconazole (ITC), voriconazole (VOC), econazole nitrate (ECN) and terbinafine (TBF) by glucose consumption method (GCM), in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A method. Twenty-eight dermatophyte isolates, including Trichophyton rubrum (T. rubrum) (n=-14) and Trichophyton mentagrophytes (T. mentagrophytes) (n=-14), were tested. In the GCM, the minimum inhibitory concentrations (MICs) were determined spectrophotometrically at 490 nm after addition of enzyme substrate color mix. For the CLSI method, the MICs were determined visually. Results Comparison revealed best agreement for TBF against T. mentagrophytes and T. rubrum, since MIC range, MIC50, and MIC90 were identical from two methods. However, for ITC and VOC, GCM showed wider MIC ranges and higher MICs than CLSI methods in most isolates. For ECN against T. rubrum, high MICs were tested by GCM (0.125-16 pg/ml) but not M38-A method (0.5-1 IJg/ml). The overall agreements for all isolates between the two methods within one dilution and two dilutions for ITC, VOC, ECN and TBF was 53.6% and 75.0%, 57.1% and 75.0%, 82.1% and 89.3%, and 85.7 and 85.7%, respectively. Conclusion Measurement of glucose uptake can predict the susceptibility of T. rubrum and T. mentagrophytes to ECN and TBF.展开更多
As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply vol...As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.展开更多
700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss prob...700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss problem caused by the high superheat degrees of regenerative steam extractions in 700°C double reheat advanced ultra-supercritical power generation system,two optimization systems are proposed in this paper.System 1 is integrated with the back pressure extraction steam turbine,and system 2 is simultaneously integrated with both the outside steam cooler and back pressure extraction steam turbine.The system performance models are built by the Ebsilon Professional software.The performances of optimized systems are analyzed by the unit consumption method.The off-design performances of optimization systems are analyzed.The results show that:the standard power generation coal consumption rates of optimization systems 1 and 2 are decreased by 1.88 g·(kW·h)^(–1),2.97 g·(kW·h)^(–1)compared with that of the 700°C reference system;the average superheat degrees of regenerative steam extractions of optimized systems 1 and 2 are decreased by 122.2°C,140.7°C(100%turbine heat acceptance condition),respectively.The comparison results also show that the performance of the optimized system 2 is better than those of the optimized system 1 and the 700°C reference system.The power generation standard coal consumption rate and the power generation efficiency of the optimized system 2 are about 232.08 g·(kW·h)^(–1)and 52.96%(100%turbine heat acceptance condition),respectively.展开更多
基金This study was supported by a grant from the Guangdong Natural Science Foundation Committee (No. 06300760).Acknowledgement: We thank Dr. XIE Zhi from Department of Dermatology and Venereology, The Second Affiliated Hospital of Sun Yat-Sen University, for his critical review of the manuscript.
文摘Background The prevalence of dermatophytoses and the development of new antifungal agents has focused interest on susceptibility tests of dermatophytes. The method used universally for susceptibility tests of dermatophytes was published as document (M38-A) in 2002 by the Clinical and Laboratory Standards Institute (CLSI), dealing with the standardization of susceptibility tests in filamentous fungi, though not including dermatophytes especially. However, it is not a very practical method for the clinical laboratory in routine susceptibility testing. In this test, we developed a novel rapid susceptibility assay --glucose consumption method (GCM) for dermatophytes. Methods In this study, we investigated the antifungal susceptibilities of dermatophytes to itraconazole (ITC), voriconazole (VOC), econazole nitrate (ECN) and terbinafine (TBF) by glucose consumption method (GCM), in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A method. Twenty-eight dermatophyte isolates, including Trichophyton rubrum (T. rubrum) (n=-14) and Trichophyton mentagrophytes (T. mentagrophytes) (n=-14), were tested. In the GCM, the minimum inhibitory concentrations (MICs) were determined spectrophotometrically at 490 nm after addition of enzyme substrate color mix. For the CLSI method, the MICs were determined visually. Results Comparison revealed best agreement for TBF against T. mentagrophytes and T. rubrum, since MIC range, MIC50, and MIC90 were identical from two methods. However, for ITC and VOC, GCM showed wider MIC ranges and higher MICs than CLSI methods in most isolates. For ECN against T. rubrum, high MICs were tested by GCM (0.125-16 pg/ml) but not M38-A method (0.5-1 IJg/ml). The overall agreements for all isolates between the two methods within one dilution and two dilutions for ITC, VOC, ECN and TBF was 53.6% and 75.0%, 57.1% and 75.0%, 82.1% and 89.3%, and 85.7 and 85.7%, respectively. Conclusion Measurement of glucose uptake can predict the susceptibility of T. rubrum and T. mentagrophytes to ECN and TBF.
基金Project(2018YFE0120100)supported by the National Key R&D Program of ChinaProject(YBPY2040)supported by the Scientific Research Foundation of Graduate School of Southeast University,China。
文摘As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.
基金financially supported by National key research and development program of China(No.2017YFB0602101,2018YFB0604404)。
文摘700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss problem caused by the high superheat degrees of regenerative steam extractions in 700°C double reheat advanced ultra-supercritical power generation system,two optimization systems are proposed in this paper.System 1 is integrated with the back pressure extraction steam turbine,and system 2 is simultaneously integrated with both the outside steam cooler and back pressure extraction steam turbine.The system performance models are built by the Ebsilon Professional software.The performances of optimized systems are analyzed by the unit consumption method.The off-design performances of optimization systems are analyzed.The results show that:the standard power generation coal consumption rates of optimization systems 1 and 2 are decreased by 1.88 g·(kW·h)^(–1),2.97 g·(kW·h)^(–1)compared with that of the 700°C reference system;the average superheat degrees of regenerative steam extractions of optimized systems 1 and 2 are decreased by 122.2°C,140.7°C(100%turbine heat acceptance condition),respectively.The comparison results also show that the performance of the optimized system 2 is better than those of the optimized system 1 and the 700°C reference system.The power generation standard coal consumption rate and the power generation efficiency of the optimized system 2 are about 232.08 g·(kW·h)^(–1)and 52.96%(100%turbine heat acceptance condition),respectively.