The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on th...The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.展开更多
Based on the theory of gearing and the gear generating mechanism, this study investigates the contact characteristics of conical involute gear pairs with crossed axes. The meshing model with a reference rack as interm...Based on the theory of gearing and the gear generating mechanism, this study investigates the contact characteristics of conical involute gear pairs with crossed axes. The meshing model with a reference rack as intermedium is established and tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the conical involute gear pairs composed of a pinion and a gear. Using the contact line of reference rack tooth surface, the path of contact is confirmed, and the calculation formula of principal direction, relative curvature, path of contact and ellipse of contact are derived. Finally, numerical examples are provided to demonstrate computational results and test gears are made for tooth-bearing tests. The conclusion verifies that the theory is applicable.展开更多
The contact stiffness of the joint surface directly affects the static and dynamic mechanical behavior,and accuracy of the machine tool.A new elastoplastic contact stiffness model is proposed by considering continuous...The contact stiffness of the joint surface directly affects the static and dynamic mechanical behavior,and accuracy of the machine tool.A new elastoplastic contact stiffness model is proposed by considering continuous and smooth contact characteristics and substrate deformation.First,the interpolation interval of cubic Hermite polynomials is improved to meet the continuous and smooth change of contact parameters during asperity deformation.Then,the micro-contact mechanism considering substrate deformation is explored by establishing an asperity-substrate system model.Furthermore,combined with statistical principles,a new contact stiffness model of the joint surface is established.Finally,the correctness of the built model is verified by comparing with experimental data and different contact models.The simulation results show that the model changes continuously and smoothly in the three deformation regions.The substrate deformation mainly affects the asperities in the elastic contact stage.The smoother is the surface,the more significant is the influence of substrate deformation.展开更多
Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order ...Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.展开更多
In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,...In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,the equations of tooth profile and contact points of face gear drive are derived by envelope principle.According to the equations,the change of tooth profile and the contact points position on face gear are analyzed.The tooth surface and contact points are obtained by numerical simulation.Results show that the tooth profile and contact characteristic of face gear drive are not sensitive to the setting error of tool.展开更多
A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element ...A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.展开更多
Al electrodes are well known as ohmic contact electrodes for the PTC component , the influence of their thickness on final component properties was investigated by comparing their ohmic characteristics with the ones ...Al electrodes are well known as ohmic contact electrodes for the PTC component , the influence of their thickness on final component properties was investigated by comparing their ohmic characteristics with the ones of InGa electrodes . After observing the Al paste physical and chemical behaviors during rising temperature by thermal analysis (DTA), the firing operation of Al electrodes could be divided into three main subsections: the temperature rising time (t-r), the peak firing temperature (T-p) and the hold time at peak firing temperature (t-h). The effects of these three parameters on final component properties were discussed in detail.展开更多
Fang contact model is introduced to analyze stress of the spherical fixed ring journal bearing.Developed calculation programs in the MATLAB software which are utilized to calculate the contact characteristics of rolle...Fang contact model is introduced to analyze stress of the spherical fixed ring journal bearing.Developed calculation programs in the MATLAB software which are utilized to calculate the contact characteristics of roller cone drill bits spherical fixed ring journal bearing.In addition,effects of external load,radius clearance values,and material parameter on the mechanics performance were investigated.The results show that the value of external load has a direct pronounced effect on the contact characteristics of journal bearing.There is a significant positive correlation between contact pressure and external load,radius clearance value,and the Young's modulus of material.However,there is an evident negative correlation between contact radius of journal bearing and radius clearance value,and the Young's modulus of material.The smaller radius clearance value of journal bearing is,the more centralized contact region will be,so the corresponding contact pressure will be higher.From the perspective of reducing friction and wear,we need select the materials which have high strength and good toughness.Not only might this can improve the wear resistance,it also effectively decreases the contact pressure.In this case,we can prolong the service life of roller cone drill bits journal bearing.展开更多
The melting characteristics and wettability of the binding phase in high basicity sinter were studied. By changing nCaO∶nFe2O3 (molar ratio of CaO to Fe2O3) as well as the percentage of MgO,SiO2,and Al2O3,the melti...The melting characteristics and wettability of the binding phase in high basicity sinter were studied. By changing nCaO∶nFe2O3 (molar ratio of CaO to Fe2O3) as well as the percentage of MgO,SiO2,and Al2O3,the melting characteristics and wettability of the binding phase were discussed. The results indicated that the characteristic melting temperature was the lowest and wettability was the best at nCaO∶nFe2O3=1∶1 (without addition); the addition of MgO increased the characteristic melting temperature and contact angles; when the percentage of SiO2 or Al2O3 was 3%,the characteristic melting temperature was the lowest,whereas the contact angles increased with an increase in SiO2 and Al2O3 contents.展开更多
The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-...The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10^-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted.Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity(n 〉 4). A high rectifying(-4.6 × 10^4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current(SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.展开更多
文摘The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.
基金Project supported by Foundation for On-The-Job Doctor of Xi’anJiaotong University(Grant No .BSJJ2001015)
文摘Based on the theory of gearing and the gear generating mechanism, this study investigates the contact characteristics of conical involute gear pairs with crossed axes. The meshing model with a reference rack as intermedium is established and tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the conical involute gear pairs composed of a pinion and a gear. Using the contact line of reference rack tooth surface, the path of contact is confirmed, and the calculation formula of principal direction, relative curvature, path of contact and ellipse of contact are derived. Finally, numerical examples are provided to demonstrate computational results and test gears are made for tooth-bearing tests. The conclusion verifies that the theory is applicable.
基金This work was supported by the National Natural Science Foundation of China(Grant Number 51975449)the Key Research and Development Program of Shaanxi(Number 2021GY-309)。
文摘The contact stiffness of the joint surface directly affects the static and dynamic mechanical behavior,and accuracy of the machine tool.A new elastoplastic contact stiffness model is proposed by considering continuous and smooth contact characteristics and substrate deformation.First,the interpolation interval of cubic Hermite polynomials is improved to meet the continuous and smooth change of contact parameters during asperity deformation.Then,the micro-contact mechanism considering substrate deformation is explored by establishing an asperity-substrate system model.Furthermore,combined with statistical principles,a new contact stiffness model of the joint surface is established.Finally,the correctness of the built model is verified by comparing with experimental data and different contact models.The simulation results show that the model changes continuously and smoothly in the three deformation regions.The substrate deformation mainly affects the asperities in the elastic contact stage.The smoother is the surface,the more significant is the influence of substrate deformation.
文摘Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.
基金Supported by the National Natural Science Foundation of China(51105194)the Scientific Research Funding of Nanjing University of Aeronautics and Astronautics(NP2011014)
文摘In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,the equations of tooth profile and contact points of face gear drive are derived by envelope principle.According to the equations,the change of tooth profile and the contact points position on face gear are analyzed.The tooth surface and contact points are obtained by numerical simulation.Results show that the tooth profile and contact characteristic of face gear drive are not sensitive to the setting error of tool.
基金Supported by Guangdong Provincial Key-Area Research and Development Program(Grant No.2019B090917002).
文摘A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.
文摘Al electrodes are well known as ohmic contact electrodes for the PTC component , the influence of their thickness on final component properties was investigated by comparing their ohmic characteristics with the ones of InGa electrodes . After observing the Al paste physical and chemical behaviors during rising temperature by thermal analysis (DTA), the firing operation of Al electrodes could be divided into three main subsections: the temperature rising time (t-r), the peak firing temperature (T-p) and the hold time at peak firing temperature (t-h). The effects of these three parameters on final component properties were discussed in detail.
基金This research workwas supported by Science and Technology Supporting Plan Project of Sichuan Province(2014GZ0153).
文摘Fang contact model is introduced to analyze stress of the spherical fixed ring journal bearing.Developed calculation programs in the MATLAB software which are utilized to calculate the contact characteristics of roller cone drill bits spherical fixed ring journal bearing.In addition,effects of external load,radius clearance values,and material parameter on the mechanics performance were investigated.The results show that the value of external load has a direct pronounced effect on the contact characteristics of journal bearing.There is a significant positive correlation between contact pressure and external load,radius clearance value,and the Young's modulus of material.However,there is an evident negative correlation between contact radius of journal bearing and radius clearance value,and the Young's modulus of material.The smaller radius clearance value of journal bearing is,the more centralized contact region will be,so the corresponding contact pressure will be higher.From the perspective of reducing friction and wear,we need select the materials which have high strength and good toughness.Not only might this can improve the wear resistance,it also effectively decreases the contact pressure.In this case,we can prolong the service life of roller cone drill bits journal bearing.
基金Sponsored by National Natural Science Foundation of China (50474014)
文摘The melting characteristics and wettability of the binding phase in high basicity sinter were studied. By changing nCaO∶nFe2O3 (molar ratio of CaO to Fe2O3) as well as the percentage of MgO,SiO2,and Al2O3,the melting characteristics and wettability of the binding phase were discussed. The results indicated that the characteristic melting temperature was the lowest and wettability was the best at nCaO∶nFe2O3=1∶1 (without addition); the addition of MgO increased the characteristic melting temperature and contact angles; when the percentage of SiO2 or Al2O3 was 3%,the characteristic melting temperature was the lowest,whereas the contact angles increased with an increase in SiO2 and Al2O3 contents.
基金supported by the Algerian Ministry of High Education and Scientific Research through the CNEPRU project No.B00L02UN310220130011,www.mesrs.dz,and www.univ-usto.dzincluded in ANVREDET PROJECT N° 18/DG/2016 “projet innovant:synthèse et caractérisation de films semiconducteurs nanostructurés et fabrication de cellule solaire” 2016,http://www.anvredet.org.dz
文摘The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10^-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted.Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity(n 〉 4). A high rectifying(-4.6 × 10^4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current(SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.