Contact problems are one of the most challenging fields in virtual assembly. Information of contact states could be utilized to realize compliant motion of work pieces, to analyze the contact stress, to assist positio...Contact problems are one of the most challenging fields in virtual assembly. Information of contact states could be utilized to realize compliant motion of work pieces, to analyze the contact stress, to assist positioning parts and so on. Some methods have already been proposed to estimate contact states between objects and in most of these methods contact states between objects are simplified in order to realize real-time visual reality animation. While in virtual assembly contact states between parts are required to analyze contact stress, deformation and quality. Besides the contact state estimation method for virtual assembly should be able to handle a number of complex parts in real time. There are rarely known methods which could meet this requirement till now. In this study a contact state estimation algorithm based on surface-matching for virtual assembly is proposed. Contacts between parts are categorized into six basic types according to contact region of surfaces. Based on continuous collision detection of polyhedral models a novel contact state identification algorithm which is based on surface matching is proposed. Then contact evolution algorithm, which utilizes the extern force and contact information, is implemented to handle evolution of contact state. Finally a prototype system is developed to verify the above technologies. Experiment results reveal that contact state between parts could be estimated correctly in real time virtual assembly. The proposed contact state estimation algorithm provides a complete solution to obtain the contact state between parts in virtual assembly. Information of contact state between parts could be utilized to realize contact dynamic, contact stress analysis, assembly quality analysis, and so on.展开更多
Robot programming by demonstration (PBD) system for task in which objectrequires contact with environment is built based on the controlling skill model. The skill isdescribed in three aspects: contact state classifier...Robot programming by demonstration (PBD) system for task in which objectrequires contact with environment is built based on the controlling skill model. The skill isdescribed in three aspects: contact state classifier, acquirement of contact states sequence andcontrolling transition between states. The classifier is developed with the support vector machineby using force sense. Sequence of states is obtained from the force signal of demonstration by theevent trigger. The velocity command of transition is achieved by linearization method. The PBDsystem is successfully built with robot controller with open architecture.展开更多
Performances of ultrasonic motor (USM) considerably depend on contact state between stator and rotor.Based on an electric contact method,the effects of thickness of single homogeneous friction material and gradient fr...Performances of ultrasonic motor (USM) considerably depend on contact state between stator and rotor.Based on an electric contact method,the effects of thickness of single homogeneous friction material and gradient friction material on contact state between stator and rotor were studied.The relative contact length was employed to describe the contact characteristics of stator and rotor.With the decrease of thickness of friction material,the contact characteristic of stator and rotor were analyzed and compared when single homogeneous friction material and gradient friction material were used.The experimental results showed that the effect of gradient friction material on contact characteristic is smaller than that of single homogeneous friction material when the thickness of friction material decreases.The result can provide experimental guidance for design and choosing of friction material for USM.展开更多
Contact state estimation is significant for evaluating grasp stability of bionic hands,especially in unknown environments or without visual/tactile feedback.It still remains challenging,particularly for soft bionic ha...Contact state estimation is significant for evaluating grasp stability of bionic hands,especially in unknown environments or without visual/tactile feedback.It still remains challenging,particularly for soft bionic hands without integrating complicated external sensors on soft fingers.Focusing on this issue,a proprioceptive-sensing-based systematic solution is proposed to estimate the contact state of soft bionic fingers in a single grasp.A kinematic model for soft fingers is first developed to capture the joint rotation angles and tendon displacement.A kinetostatic model is further built to estimate the contact force when soft fingers come in contact with objects.On this basis,a system stiffness model for soft fingers during preshaping and initial contact with objects is proposed to perceive the contact state.Moreover,an instantaneous stiffness model for soft fingers when initial contact occurs is developed for estimating the contact position on certain phalanges,especially the contact position along the distal phalange.The proposed proprioceptive-sensing-based approach is the first application in soft fingers without integrating complicated external sensors,which makes them concise and practical.Experiments are carried out to demonstrate the effectiveness and efficiency of our proposal.展开更多
Introduction: Tuberculosis is a major health problem in developing countries including Sudan. Screening for TB cases through Household contacts (HHCs) investigation is an appropriate strategy to interrupt transmission...Introduction: Tuberculosis is a major health problem in developing countries including Sudan. Screening for TB cases through Household contacts (HHCs) investigation is an appropriate strategy to interrupt transmission of TB. Objectives: To determine the prevalence tuberculosis infection and risk factors for tuberculosis infection among household contacts in Wadimadani locality, Central State, Sudan, between November 2015 and April 2016. Methods: An analytical cross-sectional study conducted. During study period, to confirm TB diagnosis, all suspect contacts were tested through sputum samples, tuberculin skin test or chest X-ray. Structured questionnaire was used to collect socio-demographic and environmental factors. Results: One hundred forty six patients of smear-positive pulmonary tuberculosis were included in the study, 657 household contacts were identified and screened. Forty three new TB cases were detected from household contacts, yielding a prevalence of 6.5% (95% confidence interval = 0.05, 0.09) of latent tuberculosis infection (LTBI). Two factors were significantly associated with LTBI among HHCs: duration of contact with a TB patient ≤ 4 months (P = 0.03) and the educational status (P = 0.02). Conclusion: Screening of HHCs of index case of TB will contribute in early detection and treatment of new cases, and considered as a forward step towards eliminating TB.展开更多
P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on...P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.展开更多
We investigate the effects of the surface states on the Schottky contacts in 4H-SiC MESFET. The Ti/Pt/Au gate metal contacts are deposited by electron beam evaporation and patterned by a lift-off process. Based on the...We investigate the effects of the surface states on the Schottky contacts in 4H-SiC MESFET. The Ti/Pt/Au gate metal contacts are deposited by electron beam evaporation and patterned by a lift-off process. Based on thermionic theory,a simple parameter extraction method is developed for determination of the surface states in metal/4H-SiC Schottky contacts. The interface state density and interface capacitance are calculated to be 4. 386 × 10^12 cm^-2 · eV^- 1 and 6. 394 × 10^-6 F/cm^2 ,which are consistent with the device's terminal characteristics.展开更多
近年来,随着普适计算概念的深入人心,智能感知技术已成为研究者们关注的焦点,且基于WiFi的非接触式感知因其优秀的普适性、低廉的部署成本以及良好的用户体验越来越受到学术界和工业界的青睐.典型的WiFi非接触式感知工作有手势识别、呼...近年来,随着普适计算概念的深入人心,智能感知技术已成为研究者们关注的焦点,且基于WiFi的非接触式感知因其优秀的普适性、低廉的部署成本以及良好的用户体验越来越受到学术界和工业界的青睐.典型的WiFi非接触式感知工作有手势识别、呼吸检测、入侵检测、行为识别等,这些工作若实际部署,需首先避免其他无关区域中无关行为的干扰,因此需要判断目标是否进入到特定的感知区域中.这意味着系统应具备精准判断目标在界线哪一侧的能力,然而现有工作未能找到一个可以对某个自由设定的边界进行精确监控的方法,这阻碍了WiFi感知应用的实际落地.基于这一关键问题,从电磁波衍射的物理本质出发,结合菲涅尔衍射模型(Fresnel diffraction model),找到一种目标穿越link(收发设备天线的连线)时的信号特征(Rayleigh distribution in Fresnel diffraction model,RFD),并揭示该信号特征与人体活动之间的数学关系;之后以link作为边界,结合天线间距带来的波形时延以及AGC(automatic gain control)在link被遮挡时的特征,通过越线检测实现对边界的监控.在此基础上,还实现了两个实际应用,即入侵检测系统和居家状态监测系统,前者的精确率超过89%、召回率超过91%,后者的准确率超过89%.在验证所提边界监控算法的可用性和鲁棒性的同时,也展示了所提方法与其他WiFi感知技术相结合的巨大潜力,为WiFi感知技术的实际部署提供了思考方向.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50805009)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing of China (Grant No. 07205)
文摘Contact problems are one of the most challenging fields in virtual assembly. Information of contact states could be utilized to realize compliant motion of work pieces, to analyze the contact stress, to assist positioning parts and so on. Some methods have already been proposed to estimate contact states between objects and in most of these methods contact states between objects are simplified in order to realize real-time visual reality animation. While in virtual assembly contact states between parts are required to analyze contact stress, deformation and quality. Besides the contact state estimation method for virtual assembly should be able to handle a number of complex parts in real time. There are rarely known methods which could meet this requirement till now. In this study a contact state estimation algorithm based on surface-matching for virtual assembly is proposed. Contacts between parts are categorized into six basic types according to contact region of surfaces. Based on continuous collision detection of polyhedral models a novel contact state identification algorithm which is based on surface matching is proposed. Then contact evolution algorithm, which utilizes the extern force and contact information, is implemented to handle evolution of contact state. Finally a prototype system is developed to verify the above technologies. Experiment results reveal that contact state between parts could be estimated correctly in real time virtual assembly. The proposed contact state estimation algorithm provides a complete solution to obtain the contact state between parts in virtual assembly. Information of contact state between parts could be utilized to realize contact dynamic, contact stress analysis, assembly quality analysis, and so on.
基金This project is supported by National Natural Science Foundation of China(No.6997S014) China 863 Robot Automatic Assembly Topic (No.863512972004).
文摘Robot programming by demonstration (PBD) system for task in which objectrequires contact with environment is built based on the controlling skill model. The skill isdescribed in three aspects: contact state classifier, acquirement of contact states sequence andcontrolling transition between states. The classifier is developed with the support vector machineby using force sense. Sequence of states is obtained from the force signal of demonstration by theevent trigger. The velocity command of transition is achieved by linearization method. The PBDsystem is successfully built with robot controller with open architecture.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50975057)the National Basic Research Program of China(Grant No.2007CB607602)
文摘Performances of ultrasonic motor (USM) considerably depend on contact state between stator and rotor.Based on an electric contact method,the effects of thickness of single homogeneous friction material and gradient friction material on contact state between stator and rotor were studied.The relative contact length was employed to describe the contact characteristics of stator and rotor.With the decrease of thickness of friction material,the contact characteristic of stator and rotor were analyzed and compared when single homogeneous friction material and gradient friction material were used.The experimental results showed that the effect of gradient friction material on contact characteristic is smaller than that of single homogeneous friction material when the thickness of friction material decreases.The result can provide experimental guidance for design and choosing of friction material for USM.
基金National Natural Science Foundation of China(Grants:61873045)Fundamental Research Funds for the Central Universities in the Dalian University of Technology in China(Grant No.DUT20LAB303).
文摘Contact state estimation is significant for evaluating grasp stability of bionic hands,especially in unknown environments or without visual/tactile feedback.It still remains challenging,particularly for soft bionic hands without integrating complicated external sensors on soft fingers.Focusing on this issue,a proprioceptive-sensing-based systematic solution is proposed to estimate the contact state of soft bionic fingers in a single grasp.A kinematic model for soft fingers is first developed to capture the joint rotation angles and tendon displacement.A kinetostatic model is further built to estimate the contact force when soft fingers come in contact with objects.On this basis,a system stiffness model for soft fingers during preshaping and initial contact with objects is proposed to perceive the contact state.Moreover,an instantaneous stiffness model for soft fingers when initial contact occurs is developed for estimating the contact position on certain phalanges,especially the contact position along the distal phalange.The proposed proprioceptive-sensing-based approach is the first application in soft fingers without integrating complicated external sensors,which makes them concise and practical.Experiments are carried out to demonstrate the effectiveness and efficiency of our proposal.
文摘Introduction: Tuberculosis is a major health problem in developing countries including Sudan. Screening for TB cases through Household contacts (HHCs) investigation is an appropriate strategy to interrupt transmission of TB. Objectives: To determine the prevalence tuberculosis infection and risk factors for tuberculosis infection among household contacts in Wadimadani locality, Central State, Sudan, between November 2015 and April 2016. Methods: An analytical cross-sectional study conducted. During study period, to confirm TB diagnosis, all suspect contacts were tested through sputum samples, tuberculin skin test or chest X-ray. Structured questionnaire was used to collect socio-demographic and environmental factors. Results: One hundred forty six patients of smear-positive pulmonary tuberculosis were included in the study, 657 household contacts were identified and screened. Forty three new TB cases were detected from household contacts, yielding a prevalence of 6.5% (95% confidence interval = 0.05, 0.09) of latent tuberculosis infection (LTBI). Two factors were significantly associated with LTBI among HHCs: duration of contact with a TB patient ≤ 4 months (P = 0.03) and the educational status (P = 0.02). Conclusion: Screening of HHCs of index case of TB will contribute in early detection and treatment of new cases, and considered as a forward step towards eliminating TB.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA050301)Scientific Research of Hebei Education Department,China(Grant No.QN2017135)
文摘P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.
文摘We investigate the effects of the surface states on the Schottky contacts in 4H-SiC MESFET. The Ti/Pt/Au gate metal contacts are deposited by electron beam evaporation and patterned by a lift-off process. Based on thermionic theory,a simple parameter extraction method is developed for determination of the surface states in metal/4H-SiC Schottky contacts. The interface state density and interface capacitance are calculated to be 4. 386 × 10^12 cm^-2 · eV^- 1 and 6. 394 × 10^-6 F/cm^2 ,which are consistent with the device's terminal characteristics.
文摘近年来,随着普适计算概念的深入人心,智能感知技术已成为研究者们关注的焦点,且基于WiFi的非接触式感知因其优秀的普适性、低廉的部署成本以及良好的用户体验越来越受到学术界和工业界的青睐.典型的WiFi非接触式感知工作有手势识别、呼吸检测、入侵检测、行为识别等,这些工作若实际部署,需首先避免其他无关区域中无关行为的干扰,因此需要判断目标是否进入到特定的感知区域中.这意味着系统应具备精准判断目标在界线哪一侧的能力,然而现有工作未能找到一个可以对某个自由设定的边界进行精确监控的方法,这阻碍了WiFi感知应用的实际落地.基于这一关键问题,从电磁波衍射的物理本质出发,结合菲涅尔衍射模型(Fresnel diffraction model),找到一种目标穿越link(收发设备天线的连线)时的信号特征(Rayleigh distribution in Fresnel diffraction model,RFD),并揭示该信号特征与人体活动之间的数学关系;之后以link作为边界,结合天线间距带来的波形时延以及AGC(automatic gain control)在link被遮挡时的特征,通过越线检测实现对边界的监控.在此基础上,还实现了两个实际应用,即入侵检测系统和居家状态监测系统,前者的精确率超过89%、召回率超过91%,后者的准确率超过89%.在验证所提边界监控算法的可用性和鲁棒性的同时,也展示了所提方法与其他WiFi感知技术相结合的巨大潜力,为WiFi感知技术的实际部署提供了思考方向.