To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the...To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.展开更多
To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are ...To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are still relatively low compared with hole-transport-materials-based PSCs. General research on influencing factors of performance in PC-based PSCs is still insufficient. In this work, PC-based PSCs were fabricated in ambient air and four groups of controlled experi- ments were performed in which the PbI2 layers were prepared with or without antisolvent extraction treatment. These four groups of experiments were designed to find out the effect of different influencing factors on PC-based PSCs performance, for example, PbI2 residual, the surface morphology of the perovskite film, the surface roughness of the perovskite film, and the contact status of the perovskite/carbon electrode interface. With a systematic analysis, we demonstrated that the contact status of the perovskite/carbon electrode interface played a vital role in PC-based PSCs, and a fiat, smooth perovskite surface could help to improve this contact status significantly. Besides, on the precondition of a poor contact interface, no PbI2 residual and a good surface morphology only brought limited benefits to the performances of PC-based PSCs.展开更多
With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is d...With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is designed mimicking human fingertip in both structures and functionalities.Two pairs of strain gages and(Polyvinylidene Fluoride)PVDF films are perpendicularly arranged to simulate the Fast-Adapting(FA)and Slowly Adapting(SA)type mechanoreceptors in human hands,while silicones,Polymethyl Methacrylate(PMMA),and electronic wires are applied to mimic the skin,bone and nerve fibers.Both static and dynamic forces can be perceived sensitively.A preprocessing electric circuit is further designed to transform the resistor changes into voltages,and then filter and amplify the four-channel signals.In addition to strong robustness due to the embedded structure,the developed fingertip is found sensitive to deformations via a force test experiment.Finally,two robotic experiments explore its recognition ability of contact status and object surface.Excellent performance is found with high accuracy of 99.72%achieved in discriminating six surfaces that are ubiquitous in daily life,which demonstrates the effectiveness of our designed tactile sensor.展开更多
基金The National Natural Science Foundation of China(No.61473088)Six Talent Peaks Projects in Jiangsu Province
文摘To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.
基金Project supported by the National Natural Science Foundation of China(Grant No.51702245)the Fundamental Research Funds for the Central Universities,China(Grant No.WUT:2017IB013)
文摘To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are still relatively low compared with hole-transport-materials-based PSCs. General research on influencing factors of performance in PC-based PSCs is still insufficient. In this work, PC-based PSCs were fabricated in ambient air and four groups of controlled experi- ments were performed in which the PbI2 layers were prepared with or without antisolvent extraction treatment. These four groups of experiments were designed to find out the effect of different influencing factors on PC-based PSCs performance, for example, PbI2 residual, the surface morphology of the perovskite film, the surface roughness of the perovskite film, and the contact status of the perovskite/carbon electrode interface. With a systematic analysis, we demonstrated that the contact status of the perovskite/carbon electrode interface played a vital role in PC-based PSCs, and a fiat, smooth perovskite surface could help to improve this contact status significantly. Besides, on the precondition of a poor contact interface, no PbI2 residual and a good surface morphology only brought limited benefits to the performances of PC-based PSCs.
基金funded by National Natural Science Foundation of China under Grant No.52205009Natural Science Foundation of Jiangsu Province under Grant No.BK20210233Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems.
文摘With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is designed mimicking human fingertip in both structures and functionalities.Two pairs of strain gages and(Polyvinylidene Fluoride)PVDF films are perpendicularly arranged to simulate the Fast-Adapting(FA)and Slowly Adapting(SA)type mechanoreceptors in human hands,while silicones,Polymethyl Methacrylate(PMMA),and electronic wires are applied to mimic the skin,bone and nerve fibers.Both static and dynamic forces can be perceived sensitively.A preprocessing electric circuit is further designed to transform the resistor changes into voltages,and then filter and amplify the four-channel signals.In addition to strong robustness due to the embedded structure,the developed fingertip is found sensitive to deformations via a force test experiment.Finally,two robotic experiments explore its recognition ability of contact status and object surface.Excellent performance is found with high accuracy of 99.72%achieved in discriminating six surfaces that are ubiquitous in daily life,which demonstrates the effectiveness of our designed tactile sensor.