An analytical method was proposed to solve the mechanical problems of stamping a thin strip on an elastic foundation. The thin strip was divided into four parts according to its deformation and contact with the punch ...An analytical method was proposed to solve the mechanical problems of stamping a thin strip on an elastic foundation. The thin strip was divided into four parts according to its deformation and contact with the punch and the elastic foundation, especially an elastic-plastic part was considered in the deflection of the thin strip. Analytical solutions were derived individually for each part and two models were established with the help of elastic and plastic large deflection theories. Compatibility conditions between the neighboring parts of the thin strip constructed the non-linear equation group. Solutions were carried out by programming with a software. The deformation shape, the membrane force, and the moment and shear force of the deformed thin strip were obtained. The results of the two models were compared. The study shows that the method is effective.展开更多
The point and the line contacts of a toroidal continuously variable transmission (CVT) are studied. The contact shapes between the roller and input and output disks are formulated by using the classical Hertz contact ...The point and the line contacts of a toroidal continuously variable transmission (CVT) are studied. The contact shapes between the roller and input and output disks are formulated by using the classical Hertz contact theory. Based on the formulated equations, different system factors affecting the maximum Hertz stress in the elliptical and strip contacts of the full toroidal CVT are explored, which include the properties of the contacting material (Young’s modulus), operating condition (pushing load) and geometrical parameters (aspect cavity ratio, aspect roller ratio). The comparative results reveal the relations between the maximum Hertz stress and the speed ratio in the form of graphs. These graphs give useful information for designer to know the maximum Hertz stress during operation in such systems.展开更多
Based on lots of field experiments and theoretical research, fully thinking the equipment and production craft characters of four high cold mill, a new cambering scheme for four high cold mill is advanced in this pape...Based on lots of field experiments and theoretical research, fully thinking the equipment and production craft characters of four high cold mill, a new cambering scheme for four high cold mill is advanced in this paper. This scheme considered the need of production of multi-specification products, as well as the control of roller ends contact. The most homogeneous transverse distribution of front tension is the control target and the homogeneous pressure distribution between rollers is the constraint condition. In this technology, working roll curve adapt the combination of cosine curve and high order curve, backup roll adapt the combination of cosine curve, straight line and high order curve. The cosine subentry of working roll and the high order curve subentry are used to control edge wave, the high order curve subentry of working roll is used to control the roll contact, the cosine subentry of backup roll is used to reduce the center wave. That’s the features of this technology. On-site testing shows that the new cambering and combination can not only manage the complex waves of normal four high cold mill effectively, but also will reduce the contact between roller ends and minish roll consumption. This technology has created economic benefits for enterprises.展开更多
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w...Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.展开更多
The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mis...The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.展开更多
基金Project(04JJ40035) supported by the Natural Science Foundation of Hunan Province, China Project(2003AA331090) supported by the High-tech Research and Development Program of China
文摘An analytical method was proposed to solve the mechanical problems of stamping a thin strip on an elastic foundation. The thin strip was divided into four parts according to its deformation and contact with the punch and the elastic foundation, especially an elastic-plastic part was considered in the deflection of the thin strip. Analytical solutions were derived individually for each part and two models were established with the help of elastic and plastic large deflection theories. Compatibility conditions between the neighboring parts of the thin strip constructed the non-linear equation group. Solutions were carried out by programming with a software. The deformation shape, the membrane force, and the moment and shear force of the deformed thin strip were obtained. The results of the two models were compared. The study shows that the method is effective.
基金Funded by the Ford-NSFC Foundation of China (No.50122151).
文摘The point and the line contacts of a toroidal continuously variable transmission (CVT) are studied. The contact shapes between the roller and input and output disks are formulated by using the classical Hertz contact theory. Based on the formulated equations, different system factors affecting the maximum Hertz stress in the elliptical and strip contacts of the full toroidal CVT are explored, which include the properties of the contacting material (Young’s modulus), operating condition (pushing load) and geometrical parameters (aspect cavity ratio, aspect roller ratio). The comparative results reveal the relations between the maximum Hertz stress and the speed ratio in the form of graphs. These graphs give useful information for designer to know the maximum Hertz stress during operation in such systems.
文摘Based on lots of field experiments and theoretical research, fully thinking the equipment and production craft characters of four high cold mill, a new cambering scheme for four high cold mill is advanced in this paper. This scheme considered the need of production of multi-specification products, as well as the control of roller ends contact. The most homogeneous transverse distribution of front tension is the control target and the homogeneous pressure distribution between rollers is the constraint condition. In this technology, working roll curve adapt the combination of cosine curve and high order curve, backup roll adapt the combination of cosine curve, straight line and high order curve. The cosine subentry of working roll and the high order curve subentry are used to control edge wave, the high order curve subentry of working roll is used to control the roll contact, the cosine subentry of backup roll is used to reduce the center wave. That’s the features of this technology. On-site testing shows that the new cambering and combination can not only manage the complex waves of normal four high cold mill effectively, but also will reduce the contact between roller ends and minish roll consumption. This technology has created economic benefits for enterprises.
文摘Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.
文摘The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.