期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The dynamical contact order:Protein folding rate parameters based on quantum conformational transitions 被引量:7
1
作者 ZHANG Ying LUO LiaoFu 《Science China(Life Sciences)》 SCIE CAS 2011年第4期386-392,共7页
Protein folding is regarded as a quantum transition between the torsion states of a polypeptide chain.According to the quantum theory of conformational dynamics,we propose the dynamical contact order(DCO) defined as a... Protein folding is regarded as a quantum transition between the torsion states of a polypeptide chain.According to the quantum theory of conformational dynamics,we propose the dynamical contact order(DCO) defined as a characteristic of the contact described by the moment of inertia and the torsion potential energy of the polypeptide chain between contact residues.Conse-quently,the protein folding rate can be quantitatively studied from the point of view of dynamics.By comparing theoretical calculations and experimental data on the folding rate of 80 proteins,we successfully validate the view that protein folding is a quantum conformational transition.We conclude that(i) a correlation between the protein folding rate and the contact inertial moment exists;(ii) multi-state protein folding can be regarded as a quantum conformational transition similar to that of two-state proteins but with an intermediate delay.We have estimated the order of magnitude of the time delay;(iii) folding can be classified into two types,exergonic and endergonic.Most of the two-state proteins with higher folding rate are exergonic and most of the multi-state proteins with low folding rate are endergonic.The folding speed limit is determined by exergonic folding. 展开更多
关键词 moment of inertia dynamical contact order (DCO) protein folding rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部