Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lit...Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery.展开更多
Water soluble disperse dyes of either monoazo or anthraquinone types containing the carboxymethylsulfonylgroup(-SO2CH2COOH)were synthesized.Ammonium salts of this type of dyes are more soluble thanother salts.These ...Water soluble disperse dyes of either monoazo or anthraquinone types containing the carboxymethylsulfonylgroup(-SO2CH2COOH)were synthesized.Ammonium salts of this type of dyes are more soluble thanother salts.These dyes are suitable for pad dyeing or printing on polyester fiber and polyester/cottonblends in either weak acid,neutral or weak alkali medium without a dispersing agent.The formation of-SO2CH3 group from -SO2CH2COOH group after fixing on the fiber was proved.展开更多
The polysiloxane containing propylene carbonate side group and several lithium poly-meric salts were synthesized. The structure were confirmed by IR, NMR and XPS. Theblending systems of polysiloxane containing propyle...The polysiloxane containing propylene carbonate side group and several lithium poly-meric salts were synthesized. The structure were confirmed by IR, NMR and XPS. Theblending systems of polysiloxane containing propylene carbonate group with different lithiumpolymeric salts were studied by ion conductivity XPS and DSC. Different lithium poly-meric salts in the blending system lead to conductivity arranged in the following sequence:poly(lithium ethylenebenzene sulfonate methylsiloxane)>poly(lithium propionate methyl-siloxane)>poly(lithium propylsulfonate methylsiloxane)>poly(lithium styrenesulfonate).In the blending system the best single ion conductivity was close to 10^(-5) Scm^(-1) at roomtemperature. XPS showed that at low lithium salt concentration the conductivity increasedwith the increasing content of lithium salt, in consequence of the increase of free ion andsolvent separated ion pair. At high lithium salt concentration the free ion was absent andthe solvent-separated ion pair functioned as carrier.展开更多
基金support from the National Natural Science Foundation of China(52034011)the Fundamental Research Funds for the Science and Technology Program of Hunan Province(2019RS3002)+1 种基金the Central Universities of Central South University(Grant No.2018zzts133)Science and Technology Innovation Program of Hunan Province(2020RC2006).
文摘Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery.
文摘Water soluble disperse dyes of either monoazo or anthraquinone types containing the carboxymethylsulfonylgroup(-SO2CH2COOH)were synthesized.Ammonium salts of this type of dyes are more soluble thanother salts.These dyes are suitable for pad dyeing or printing on polyester fiber and polyester/cottonblends in either weak acid,neutral or weak alkali medium without a dispersing agent.The formation of-SO2CH3 group from -SO2CH2COOH group after fixing on the fiber was proved.
基金This work was supported by the National Natural Science Foundation of China.
文摘The polysiloxane containing propylene carbonate side group and several lithium poly-meric salts were synthesized. The structure were confirmed by IR, NMR and XPS. Theblending systems of polysiloxane containing propylene carbonate group with different lithiumpolymeric salts were studied by ion conductivity XPS and DSC. Different lithium poly-meric salts in the blending system lead to conductivity arranged in the following sequence:poly(lithium ethylenebenzene sulfonate methylsiloxane)>poly(lithium propionate methyl-siloxane)>poly(lithium propylsulfonate methylsiloxane)>poly(lithium styrenesulfonate).In the blending system the best single ion conductivity was close to 10^(-5) Scm^(-1) at roomtemperature. XPS showed that at low lithium salt concentration the conductivity increasedwith the increasing content of lithium salt, in consequence of the increase of free ion andsolvent separated ion pair. At high lithium salt concentration the free ion was absent andthe solvent-separated ion pair functioned as carrier.