In this study,a series of Er^3+/Yb^3+co-doped Ca-Mg-Si glasses were prepared via the containerless processing.Phase composition and luminescent properties of the prepared materials were investigated through XRD and sp...In this study,a series of Er^3+/Yb^3+co-doped Ca-Mg-Si glasses were prepared via the containerless processing.Phase composition and luminescent properties of the prepared materials were investigated through XRD and spectrometry,and bioactivity,biocompatibility and cytotoxicity were evaluated.The XRD patterns indicated that akermanite(AKT)ceramic powders were completely transformed into the glassy phase(AKT-G,EYA)through the containerless processing,which exhibit upconversion luminescence,and the luminescence intensity increased with the increase of the doping amount of Er^3+ and Yb^3+.High amount of Yb^3+doping and existence of Ca^2+in glasses resulted in more intensive red-light emission.The SEM observation,combined with EDS analysis,and cell culture experiments showed that the as-prepared glasses were nontoxic,biocompatible and bioactive.All these results demonstrated that the containerless processing is a facile method for preparing homogeneous luminescent bioactive glasses.Furthermore,this luminescent Ca-Mg-Si glasses may be used as bone implant materials to study the in vivo distribution of degradation products of bone implants,which may be of great significance for the development and clinical application of new bone grafting materials.展开更多
Rapid solidification of Cu-Pb monotectic alloys has been accomplished during free fall in a 3 m drop tube. Both macrosegregated and uniformly dispersed structures are observed in Cu-40 wt pct Pb alloy droplets, wherea...Rapid solidification of Cu-Pb monotectic alloys has been accomplished during free fall in a 3 m drop tube. Both macrosegregated and uniformly dispersed structures are observed in Cu-40 wt pct Pb alloy droplets, whereas droplets of composition Cu-64 wt pct Pb exhibit only macrosegregation morphologies. The microstructures are strongly dependent on droplet size. The higher undercooling tends to facilitate liquid phase separation and results in more extensive macrosegregation in smaller droplets. There exists a pronounced tendency for the Pb-rich liquid to occupy the surface of the droplets of both compositions, resulting from the quite lower surface tension of the Pb-rich phase and causing a Pb-rich layer at the surface of the solidified droplet. The nucleation of monotectic cells in the Cu-40 wt pct Pb droplets with dispersed structures preferentially occurs at the droplet surface. A single nucleation event takes place more frequently as droplet size is reduced.展开更多
Droplets of Co-37.6 wt pct Mo and Ni-47.7 wt pct Mo eutectic alloys were rapidly solidified during containerless processing in a 3 m drop tube. A kind of anomalous eutectic appears in these two eutectic alloys when un...Droplets of Co-37.6 wt pct Mo and Ni-47.7 wt pct Mo eutectic alloys were rapidly solidified during containerless processing in a 3 m drop tube. A kind of anomalous eutectic appears in these two eutectic alloys when undercooling is beyond 56 and 61 K, respectively. The two eutectic phases in anomalous eutectic were observed to grow in dendrite manner. The formation of anomalous eutectic is ascribed to the cooperative dendrite growth of the two independently nucleated eutectic phases. Current dendrite and eutectic growth theories are applied to describe the observed processes.展开更多
The dynamic characteristics of acoustic levitation were investigated for the purpose of containerless processing of materials. Experimental measurements were accomplished on the variations of sound pressure level with...The dynamic characteristics of acoustic levitation were investigated for the purpose of containerless processing of materials. Experimental measurements were accomplished on the variations of sound pressure level with both axial position z (6.5mm≤ z ≤27.5mm) and radial position r (1mm≤ r ≤16mm) in a cylindrical resonant tube(34mm×45mm) of a single axis acoustic levitator. The results showed that the minimum sound pressure levels in both axial and radial directions occur at the centres of two transverse intercepting planes with z =8.5mm and z =21.5mm, which were identified as the sound pressure nodes not only of the axial direction but also of the radial direction, and hence were expected to have good levitation stability. This was further proved by experimental observations.展开更多
A new class of high-entropy oxide glasses 20LaO_(3/2)-20TiO_(2)-20NbO_(5/2)-20WO_(3)-20MO_(3/2)(M=B/Ga/In)were designed and successfully fabricated by aerodynamic containerless processing.The results show that one can...A new class of high-entropy oxide glasses 20LaO_(3/2)-20TiO_(2)-20NbO_(5/2)-20WO_(3)-20MO_(3/2)(M=B/Ga/In)were designed and successfully fabricated by aerodynamic containerless processing.The results show that one can control the properties and increase the functionality of glass by changing the type of M.The Vicker's hardness reaches the highest value of 6.45 GPa for glass M=B.The best thermal stability and the glass forming ability,measured using the glass-transition temperature T_(g) and the temperature gap ΔT respectively,are found in glass M=In,with T_(g)=740℃ and ΔT=72℃.The optical properties show that the as-prepared glasses exhibit good transparency and high refractive index.Especially for glass M=In,its transmittance reaches almost 78% from visible to IR region,and the value is nearly unchanged after electron beam irradiation,indicating good irradiation resistance of this high-entropy oxide glass.Furthermore,the glass M=In has the highest refractive index(n_(d)=2.46) and low wavelength dispersion(v_(d)=45.6).These results demonstrate that the conceptual design of high-entropy materials is adaptable to high performance oxide glasses,which should be promising host materials for optical applications such as smart phones with digital cameras and endoscopes.展开更多
An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of va...An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.展开更多
Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrode...Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrodes.The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened.Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force.The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability.As a measure characterizing the intrinsic levitation ability of various materials,the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.展开更多
文摘In this study,a series of Er^3+/Yb^3+co-doped Ca-Mg-Si glasses were prepared via the containerless processing.Phase composition and luminescent properties of the prepared materials were investigated through XRD and spectrometry,and bioactivity,biocompatibility and cytotoxicity were evaluated.The XRD patterns indicated that akermanite(AKT)ceramic powders were completely transformed into the glassy phase(AKT-G,EYA)through the containerless processing,which exhibit upconversion luminescence,and the luminescence intensity increased with the increase of the doping amount of Er^3+ and Yb^3+.High amount of Yb^3+doping and existence of Ca^2+in glasses resulted in more intensive red-light emission.The SEM observation,combined with EDS analysis,and cell culture experiments showed that the as-prepared glasses were nontoxic,biocompatible and bioactive.All these results demonstrated that the containerless processing is a facile method for preparing homogeneous luminescent bioactive glasses.Furthermore,this luminescent Ca-Mg-Si glasses may be used as bone implant materials to study the in vivo distribution of degradation products of bone implants,which may be of great significance for the development and clinical application of new bone grafting materials.
基金Financial support from the National Natural Science Founda tion of China(No.59871040 and 50071009)is gratefuly acknowledged.
文摘Rapid solidification of Cu-Pb monotectic alloys has been accomplished during free fall in a 3 m drop tube. Both macrosegregated and uniformly dispersed structures are observed in Cu-40 wt pct Pb alloy droplets, whereas droplets of composition Cu-64 wt pct Pb exhibit only macrosegregation morphologies. The microstructures are strongly dependent on droplet size. The higher undercooling tends to facilitate liquid phase separation and results in more extensive macrosegregation in smaller droplets. There exists a pronounced tendency for the Pb-rich liquid to occupy the surface of the droplets of both compositions, resulting from the quite lower surface tension of the Pb-rich phase and causing a Pb-rich layer at the surface of the solidified droplet. The nucleation of monotectic cells in the Cu-40 wt pct Pb droplets with dispersed structures preferentially occurs at the droplet surface. A single nucleation event takes place more frequently as droplet size is reduced.
基金This work is financially supported by the National Natural Science Foundation of China(Grant No.s 50101010,59901009,50221101 and 50201013)Doctorate Foundation of Northwestern Polytechnical University(Grant No.200243).
文摘Droplets of Co-37.6 wt pct Mo and Ni-47.7 wt pct Mo eutectic alloys were rapidly solidified during containerless processing in a 3 m drop tube. A kind of anomalous eutectic appears in these two eutectic alloys when undercooling is beyond 56 and 61 K, respectively. The two eutectic phases in anomalous eutectic were observed to grow in dendrite manner. The formation of anomalous eutectic is ascribed to the cooperative dendrite growth of the two independently nucleated eutectic phases. Current dendrite and eutectic growth theories are applied to describe the observed processes.
文摘The dynamic characteristics of acoustic levitation were investigated for the purpose of containerless processing of materials. Experimental measurements were accomplished on the variations of sound pressure level with both axial position z (6.5mm≤ z ≤27.5mm) and radial position r (1mm≤ r ≤16mm) in a cylindrical resonant tube(34mm×45mm) of a single axis acoustic levitator. The results showed that the minimum sound pressure levels in both axial and radial directions occur at the centres of two transverse intercepting planes with z =8.5mm and z =21.5mm, which were identified as the sound pressure nodes not only of the axial direction but also of the radial direction, and hence were expected to have good levitation stability. This was further proved by experimental observations.
基金Project supported by the National Natural Science Foundation of China (51972048)the Fundamental Research Funds for the Central Universities (N2123003)。
文摘A new class of high-entropy oxide glasses 20LaO_(3/2)-20TiO_(2)-20NbO_(5/2)-20WO_(3)-20MO_(3/2)(M=B/Ga/In)were designed and successfully fabricated by aerodynamic containerless processing.The results show that one can control the properties and increase the functionality of glass by changing the type of M.The Vicker's hardness reaches the highest value of 6.45 GPa for glass M=B.The best thermal stability and the glass forming ability,measured using the glass-transition temperature T_(g) and the temperature gap ΔT respectively,are found in glass M=In,with T_(g)=740℃ and ΔT=72℃.The optical properties show that the as-prepared glasses exhibit good transparency and high refractive index.Especially for glass M=In,its transmittance reaches almost 78% from visible to IR region,and the value is nearly unchanged after electron beam irradiation,indicating good irradiation resistance of this high-entropy oxide glass.Furthermore,the glass M=In has the highest refractive index(n_(d)=2.46) and low wavelength dispersion(v_(d)=45.6).These results demonstrate that the conceptual design of high-entropy materials is adaptable to high performance oxide glasses,which should be promising host materials for optical applications such as smart phones with digital cameras and endoscopes.
基金supported by the National Natural Science Foun-dation of China (Grant Nos. 50121101, 50971103 and 50971105)the Program for New Century Excellent Talents in University
文摘An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 50971103 and 51271150)the Program for New Century Excellent Talentsthe NPU Foundation for Fundamental Research
文摘Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrodes.The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened.Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force.The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability.As a measure characterizing the intrinsic levitation ability of various materials,the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.