In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts...In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts. To facilitate the decision-making in the health-care and the related areas, in this paper, a two-step content-based medical image retrieval algorithm is proposed. Firstly, in the preprocessing step, the image segmentation is performed to distinguish image objects, and on the basis of the ...展开更多
This paper presents an approach to improve medical image retrieval, particularly for brain tumors, by addressing the gap between low-level visual and high-level perceived contents in MRI, X-ray, and CT scans. Traditio...This paper presents an approach to improve medical image retrieval, particularly for brain tumors, by addressing the gap between low-level visual and high-level perceived contents in MRI, X-ray, and CT scans. Traditional methods based on color, shape, or texture are less effective. The proposed solution uses machine learning to handle high-dimensional image features, reducing computational complexity and mitigating issues caused by artifacts or noise. It employs a genetic algorithm for feature reduction and a hybrid residual UNet(HResUNet) model for Region-of-Interest(ROI) segmentation and classification, with enhanced image preprocessing. The study examines various loss functions, finding that a hybrid loss function yields superior results, and the GA-HResUNet model outperforms the HResUNet. Comparative analysis with state-of-the-art models shows a 4% improvement in retrieval accuracy.展开更多
文摘In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts. To facilitate the decision-making in the health-care and the related areas, in this paper, a two-step content-based medical image retrieval algorithm is proposed. Firstly, in the preprocessing step, the image segmentation is performed to distinguish image objects, and on the basis of the ...
文摘This paper presents an approach to improve medical image retrieval, particularly for brain tumors, by addressing the gap between low-level visual and high-level perceived contents in MRI, X-ray, and CT scans. Traditional methods based on color, shape, or texture are less effective. The proposed solution uses machine learning to handle high-dimensional image features, reducing computational complexity and mitigating issues caused by artifacts or noise. It employs a genetic algorithm for feature reduction and a hybrid residual UNet(HResUNet) model for Region-of-Interest(ROI) segmentation and classification, with enhanced image preprocessing. The study examines various loss functions, finding that a hybrid loss function yields superior results, and the GA-HResUNet model outperforms the HResUNet. Comparative analysis with state-of-the-art models shows a 4% improvement in retrieval accuracy.