For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu...For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.展开更多
Agricultural and forestry biomass can be converted to biochar through pyrolysis gasification,making it a significant carbon source for soil.Applying biochar to soil is a carbon-negative process that helps combat clima...Agricultural and forestry biomass can be converted to biochar through pyrolysis gasification,making it a significant carbon source for soil.Applying biochar to soil is a carbon-negative process that helps combat climate change,sustain soil biodiversity,and regulate water cycling.However,quantifying soil carbon content conventionally is time-consuming,labor-intensive,imprecise,and expensive,making it difficult to accurately measure in-field soil carbon’s effect on storage water and nutrients.To address this challenge,this paper for the first time,reports on extensive lab tests demonstrating non-intrusive methods for sensing soil carbon and related smart biochar applications,such as differentiating between biochar types from various biomass feedstock species,monitoring soil moisture,and biochar water retention capacity using portable microwave and millimeter wave sensors,and machine learning.These methods can be scaled up by deploying the sensor in-field on a mobility platform,either ground or aerial.The paper provides details on the materials,methods,machine learning workflow,and results of our investigations.The significance of this work lays the foundation for assessing carbon-negative technology applications,such as soil carbon content accounting.We validated our quantification method using supervised machine learning algorithms by collecting real soil mixed with known biochar contents in the field.The results show that the millimeter wave sensor achieves high sensing accuracy(up to 100%)with proper classifiers selected and outperforms the microwave sensor by approximately 10%–15%accuracy in sensing soil carbon content.展开更多
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investiga...Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.展开更多
The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west s...The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability.展开更多
Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research ar...Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.展开更多
Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of ...Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.展开更多
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)an...Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.展开更多
Independent observation of the effects of agricultural management practices on soil organic carbon (SOC) with soil moisture content (SMC) is essential to quantify their potential relationships for sustainable ecosyste...Independent observation of the effects of agricultural management practices on soil organic carbon (SOC) with soil moisture content (SMC) is essential to quantify their potential relationships for sustainable ecosystems. Soil water retention studies and soil carbon stocks have been mapped in some areas worldwide. However, few studies have been conducted in the southeastern US, particularly in Mississippi. The objectives of this research study were to collect soil samples from fields chosen to be representative of the watersheds they are contained within, analyze the soil samples for carbon content and soil moisture content, and evaluate the relationship between SOC and different parameters (land use, vertical distribution, temporal distribution, and soil moisture content). Field sites were chosen based on their compositional similarity shared with the watershed as a whole in the Town Creek watershed (TCW) and Upper Pearl River watershed (UPRW) in Mississippi. Monthly soil samples from different depths (6 inch, 12 inch, and 24 inch) were collected from crop, pasture, and forest field areas. Soil samples were analyzed using bench analysis, elemental analysis, and statistical analysis. This study was able to demonstrate the SOC distribution in the soil layers across all three land uses studied. It was also shown that there does seem to be an interactive effect of parameters such as land use type, vertical distribution, and time on carbon accretion within the soil. Results of this study also determined that the near surface (6-in) layer was found to contain significantly more carbon than either the 12 inch or 24 inch layers (p 0.01) across all field types. There was found to be a high degree of variability within the soil moisture data and correlation between SOC and SMC. It was found that carbon amount is not influenced by SMC but SMC could be influenced by SOC.展开更多
Aiming at the shortage of sufficient continuous parameters for using models to estimate farmland soil organic carbon(SOC) content, an acquisition method of factors influencing farmland SOC and an estimation method of ...Aiming at the shortage of sufficient continuous parameters for using models to estimate farmland soil organic carbon(SOC) content, an acquisition method of factors influencing farmland SOC and an estimation method of farmland SOC content with Internet of Things(IOT) are proposed in this paper. The IOT sensing device and transmission network were established in a wheat demonstration base in Yanzhou Distict of Jining City, Shandong Province, China to acquire data in real time. Using real-time data and statistics data, the dynamic changes of SOC content between October 2012 and June 2015 was simulated in the experimental area with SOC dynamic simulation model. In order to verify the estimation results, potassium dichromate external heating method was applied for measuring the SOC content. The results show that: 1) The estimated value matches the measured value in the lab very well. So the method is feasible in this paper. 2) There is a clear dynamic variation in the SOC content at 0.2 m soil depth in different growing periods of wheat. The content reached the highest level during the sowing period, and is lowest in the flowering period. 3) The SOC content at 0.2 m soil depth varies in accordance with the amount of returned straw. The larger the amount of returned straw is, the higher the SOC content.展开更多
Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large unce...Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.展开更多
Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted ave...Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.展开更多
A pot experiment was conducted in the Institute of Tianlong Ecology of Baotou City in Inner Mongolia, China, to investigate the effects of the application of biofertilizers and super absorbent polymers(SAP) on plant g...A pot experiment was conducted in the Institute of Tianlong Ecology of Baotou City in Inner Mongolia, China, to investigate the effects of the application of biofertilizers and super absorbent polymers(SAP) on plant growth and soil improvement in arid mining area soil. Two typical species, namely, Syringa oblata Lindl.(SO) and Medicago sativa L.(MS), were present in the Bayan Obo mining area and used as representatives of shrubs and herbaceous plants in the pot experiment.(1) Biofertilizers and SAP significantly increased the tree height, the ground diameter of SO, and the total biomass of MS and improved the soil fertility of the mining area, especially its biological fertility, compared with those of the control group(CK). The application of biofertilizers and SAP decreased the mining soil p H and significantly increased available nitrogen, available phosphorus, available potassium, and soil organic matter.(2) After 180 days of growth, the microbial population(bacteria, fungi, and actinomycetes) and soil microbial biomass carbon and nitrogen significantly increased. Microbial ratios C: N significantly decreased compared with those of CK.(3) T5 and T6 treatments with the following dosages might be the optimum selection for the improvement of the studied mining area soil: 20 g SAP + 15 g biofertilizers(SO), 100 g/m2 SAP + 150 g biofertilizers(MS); 20 g SAP + 30 g biofertilizers(SO), and 100 g/m2 SAP + 200 g biofertilizers(MS). This study provided a promising reference for conducting future field studies and the local vegetation restoration.展开更多
[Objective] The study aimed to find an efficient and sustainable way to improve the degraded soil quality in the semiarid Loess Plateau. [Method] This study was done with three treatments: (1) the perennial legume ...[Objective] The study aimed to find an efficient and sustainable way to improve the degraded soil quality in the semiarid Loess Plateau. [Method] This study was done with three treatments: (1) the perennial legume species alfalfa (Medicago sativa L.) (AF) planted at a density of 22.5 kg/hm 2 ; (2) the biennial legume species sweetclover (Melilotus officinalis L.) (SF) planted at a density of 11.3 kg/hm 2 ; and (3) natural regeneration (NR). [Result] It is found that NR helped improve deep soil water but with the lowest aboveground biomass. In contrast, AF has the lowest soil water content but with the highest aboveground biomass. Furthermore, in contrast to SF, NR and AF have a higher soil organic carbon and total nitrogen. However, there were no significant differences on soil total and available phosphorus, and soil microbial biomass among all the treatments. As the experiment lasts, AP decreased significantly in all treatments in comparison with their initial values at the beginning of the experiment in 2003. [Conclusion] NR was the best way to restore the deep soil water among all the treatments, and phosphorus fertilizer was necessary for the sustainable development of agricultural production. This research provides a valuable example of soil quality restoration in semiarid regions.展开更多
Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a ...Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.展开更多
Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables hav...Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).展开更多
There are about 5 million ha of strongly acid soils (pH < 4.8 in 0.01 mol·L -1 CaCl 2 ) in Victoria and about 11 million ha of mildly acid soils (pH 4.8~5.5) that are considered susceptible to furthe...There are about 5 million ha of strongly acid soils (pH < 4.8 in 0.01 mol·L -1 CaCl 2 ) in Victoria and about 11 million ha of mildly acid soils (pH 4.8~5.5) that are considered susceptible to further acidification under current agricultural use. However, there appear to be differences in the rate of acidification, as measured by soil pH change, between soils under perennial pastures in the higher rainfall areas of southern Victoria and soils under annual pastures in the sheep-wheat areas of the north-east. Measurements made on representative soils from both regions showed that the southern soils generally had a higher pH buffer capacity, which was primarily determined by the organic carbon content. There was a consistent relationship between the short-term buffer capacity (measured by titration) and the long-term buffer capacity (measured by incubation), irrespective of the origin of the soils. Exchangeable Al, measured in 0.01 mol·L -1 CaCl 2 , was strongly negatively correlated with pH and the relationship for all soils suggested that Al was adsorbed as a cation with an average charge of 1.2展开更多
[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected la...[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected land use type were examined in Hainan. [Result] The results showed that GRSP and SOC content of four artificial land use types decreased compared with the natural secondary forest land,the GRSP content of all samples ranged from 0.53-4.80 mg/g,accounting for 7.9%-23.4% of the SOC,which means that GRSP was one important component of SOC pool in soil. The ratio of GRSP to SOC was significantly different among land use types but the depths. GRSP and SOC exhibited obvious vertical distribution pattern. GRSP was significantly positively related to SOC and sand content but negatively related to silt and clay content. [Conclusion] The sand content determined the GRSP content significantly and loam was better matrix for GRSP accumulation than clay.展开更多
Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented...Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.展开更多
To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement ...To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement of CO 2 fluxes in the rain-fed winter wheat field of the Chinese Loess Plateau. The results showed that the annual net ecosystem CO 2 exchange (NEE) was (-71.6±5.7) and (-65.3±5.3) g C m-2 y-1 for 2008-2009 and 2009-2010 crop years, respectively, suggesting that the agro-ecosystem was a carbon sink (117.4-126.2 g C m-2 yr-1). However, after considering the harvested grain, the agro- ecosystem turned into a moderate carbon source. The variations in NEE and ecosystem respiration (R eco ) were sensitive to changes in soil water content (SWC). When SWC ranged form 0.15 to 0.21 m3 m-3, we found a highly significant relationship between NEE and photosynthetically active radiation (PAR), and a highly significant relationship between R eco and soil temperature (T s ). However, the highly significant relationships were not observed when SWC was outside the range of 0.15-0.21 m3 m-3. Further, in spring, the R eco instantly responded to a rapid increase in SWC after effective rainfall events, which could induce 2 to 4-fold increase in daily R eco , whereas the R eco was also inhibited by heavy summer rainfall when soils were saturated. Accumulated R eco in summer fallow period decreased carbon fixed in growing season by 16- 25%, indicating that the period imposed negative impacts on annual carbon sequestration.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42330708 and 41820104001)。
文摘For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.
基金supported by SGC project5 entitled"Mobile Biochar Production for Methane Emission Reduction and Soil Amendment".Grant Agreement#CCR20014supported in part by NSF CBET#1856112supported in part by an F3 R&D GSR Award (Farms Food Future Innovation Initiative (or F3),as funded by US Dept.of Commerce,Economic Development Administration Build Back Better Regional Challenge).
文摘Agricultural and forestry biomass can be converted to biochar through pyrolysis gasification,making it a significant carbon source for soil.Applying biochar to soil is a carbon-negative process that helps combat climate change,sustain soil biodiversity,and regulate water cycling.However,quantifying soil carbon content conventionally is time-consuming,labor-intensive,imprecise,and expensive,making it difficult to accurately measure in-field soil carbon’s effect on storage water and nutrients.To address this challenge,this paper for the first time,reports on extensive lab tests demonstrating non-intrusive methods for sensing soil carbon and related smart biochar applications,such as differentiating between biochar types from various biomass feedstock species,monitoring soil moisture,and biochar water retention capacity using portable microwave and millimeter wave sensors,and machine learning.These methods can be scaled up by deploying the sensor in-field on a mobility platform,either ground or aerial.The paper provides details on the materials,methods,machine learning workflow,and results of our investigations.The significance of this work lays the foundation for assessing carbon-negative technology applications,such as soil carbon content accounting.We validated our quantification method using supervised machine learning algorithms by collecting real soil mixed with known biochar contents in the field.The results show that the millimeter wave sensor achieves high sensing accuracy(up to 100%)with proper classifiers selected and outperforms the microwave sensor by approximately 10%–15%accuracy in sensing soil carbon content.
基金Under the auspices of the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090182120024)National Natural Science Foundation of China (No. 41101568)+1 种基金Natural Science Foundation Project of Chongqing Science & Technology Commission (No. cstcjjA00008)Fundamental Research Funds for the Central Universities (2012XZZX012)
文摘Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.
基金supported by National Technology Support Project (2008BAD95B10-6)
文摘The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability.
基金Supported by the National Natural Science Foundation of China(31360320)~~
文摘Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060104)
文摘Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.
基金funded by the Qinghai Science and Technology Department(Grant No.2017-ZJ-799)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK1002)received form Program for the National Natural Sciences Foundation of China(Grant No.41665008,31872999,41565008,41861049)。
文摘Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.
文摘Independent observation of the effects of agricultural management practices on soil organic carbon (SOC) with soil moisture content (SMC) is essential to quantify their potential relationships for sustainable ecosystems. Soil water retention studies and soil carbon stocks have been mapped in some areas worldwide. However, few studies have been conducted in the southeastern US, particularly in Mississippi. The objectives of this research study were to collect soil samples from fields chosen to be representative of the watersheds they are contained within, analyze the soil samples for carbon content and soil moisture content, and evaluate the relationship between SOC and different parameters (land use, vertical distribution, temporal distribution, and soil moisture content). Field sites were chosen based on their compositional similarity shared with the watershed as a whole in the Town Creek watershed (TCW) and Upper Pearl River watershed (UPRW) in Mississippi. Monthly soil samples from different depths (6 inch, 12 inch, and 24 inch) were collected from crop, pasture, and forest field areas. Soil samples were analyzed using bench analysis, elemental analysis, and statistical analysis. This study was able to demonstrate the SOC distribution in the soil layers across all three land uses studied. It was also shown that there does seem to be an interactive effect of parameters such as land use type, vertical distribution, and time on carbon accretion within the soil. Results of this study also determined that the near surface (6-in) layer was found to contain significantly more carbon than either the 12 inch or 24 inch layers (p 0.01) across all field types. There was found to be a high degree of variability within the soil moisture data and correlation between SOC and SMC. It was found that carbon amount is not influenced by SMC but SMC could be influenced by SOC.
基金Under the auspices of National High-tech R&D Program of China(No.2013AA102301)National Natural Science Foundation of China(No.71503148)
文摘Aiming at the shortage of sufficient continuous parameters for using models to estimate farmland soil organic carbon(SOC) content, an acquisition method of factors influencing farmland SOC and an estimation method of farmland SOC content with Internet of Things(IOT) are proposed in this paper. The IOT sensing device and transmission network were established in a wheat demonstration base in Yanzhou Distict of Jining City, Shandong Province, China to acquire data in real time. Using real-time data and statistics data, the dynamic changes of SOC content between October 2012 and June 2015 was simulated in the experimental area with SOC dynamic simulation model. In order to verify the estimation results, potassium dichromate external heating method was applied for measuring the SOC content. The results show that: 1) The estimated value matches the measured value in the lab very well. So the method is feasible in this paper. 2) There is a clear dynamic variation in the SOC content at 0.2 m soil depth in different growing periods of wheat. The content reached the highest level during the sowing period, and is lowest in the flowering period. 3) The SOC content at 0.2 m soil depth varies in accordance with the amount of returned straw. The larger the amount of returned straw is, the higher the SOC content.
基金financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars(41825020)General Program(31870461)+3 种基金the“Hundred Talent Program”of South China Botanical Garden at the Chinese Academy of Sciences(Y761031001)the“Young Top-notch Talent”in Pearl River talent plan of Guangdong Province(2019QN01L763)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012147)the China Scholarships Council(No.202004910605).
文摘Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.
文摘Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.
基金supported by funds for Studies on Afforestation Materials with Super Absorbent Polymers in the Zhangjiakou Drought Area of Hebei Province,China(Grant No.2014HXFWSBXY025)the business cooperation research projects for Studies on Ecological Restoration Technology of Mine Restoration in Arid Area(Eco-Elion Restoration Co.,Ltd.&Beijing Forestry University)
文摘A pot experiment was conducted in the Institute of Tianlong Ecology of Baotou City in Inner Mongolia, China, to investigate the effects of the application of biofertilizers and super absorbent polymers(SAP) on plant growth and soil improvement in arid mining area soil. Two typical species, namely, Syringa oblata Lindl.(SO) and Medicago sativa L.(MS), were present in the Bayan Obo mining area and used as representatives of shrubs and herbaceous plants in the pot experiment.(1) Biofertilizers and SAP significantly increased the tree height, the ground diameter of SO, and the total biomass of MS and improved the soil fertility of the mining area, especially its biological fertility, compared with those of the control group(CK). The application of biofertilizers and SAP decreased the mining soil p H and significantly increased available nitrogen, available phosphorus, available potassium, and soil organic matter.(2) After 180 days of growth, the microbial population(bacteria, fungi, and actinomycetes) and soil microbial biomass carbon and nitrogen significantly increased. Microbial ratios C: N significantly decreased compared with those of CK.(3) T5 and T6 treatments with the following dosages might be the optimum selection for the improvement of the studied mining area soil: 20 g SAP + 15 g biofertilizers(SO), 100 g/m2 SAP + 150 g biofertilizers(MS); 20 g SAP + 30 g biofertilizers(SO), and 100 g/m2 SAP + 200 g biofertilizers(MS). This study provided a promising reference for conducting future field studies and the local vegetation restoration.
基金Supported by the Special Fund for Scientific Research in the Public Interest of Ministry of Agriculture(201203030)a grant from the Department of Science and Technology of Anhui Province(1206c0805033)the Special Foundation of the President of Anhui Academy of Agricultural Sciences for Young Scholars(11B1021)~~
文摘[Objective] The study aimed to find an efficient and sustainable way to improve the degraded soil quality in the semiarid Loess Plateau. [Method] This study was done with three treatments: (1) the perennial legume species alfalfa (Medicago sativa L.) (AF) planted at a density of 22.5 kg/hm 2 ; (2) the biennial legume species sweetclover (Melilotus officinalis L.) (SF) planted at a density of 11.3 kg/hm 2 ; and (3) natural regeneration (NR). [Result] It is found that NR helped improve deep soil water but with the lowest aboveground biomass. In contrast, AF has the lowest soil water content but with the highest aboveground biomass. Furthermore, in contrast to SF, NR and AF have a higher soil organic carbon and total nitrogen. However, there were no significant differences on soil total and available phosphorus, and soil microbial biomass among all the treatments. As the experiment lasts, AP decreased significantly in all treatments in comparison with their initial values at the beginning of the experiment in 2003. [Conclusion] NR was the best way to restore the deep soil water among all the treatments, and phosphorus fertilizer was necessary for the sustainable development of agricultural production. This research provides a valuable example of soil quality restoration in semiarid regions.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).
文摘There are about 5 million ha of strongly acid soils (pH < 4.8 in 0.01 mol·L -1 CaCl 2 ) in Victoria and about 11 million ha of mildly acid soils (pH 4.8~5.5) that are considered susceptible to further acidification under current agricultural use. However, there appear to be differences in the rate of acidification, as measured by soil pH change, between soils under perennial pastures in the higher rainfall areas of southern Victoria and soils under annual pastures in the sheep-wheat areas of the north-east. Measurements made on representative soils from both regions showed that the southern soils generally had a higher pH buffer capacity, which was primarily determined by the organic carbon content. There was a consistent relationship between the short-term buffer capacity (measured by titration) and the long-term buffer capacity (measured by incubation), irrespective of the origin of the soils. Exchangeable Al, measured in 0.01 mol·L -1 CaCl 2 , was strongly negatively correlated with pH and the relationship for all soils suggested that Al was adsorbed as a cation with an average charge of 1.2
基金Supported by National Natural Science Foundation of China(40761024)~~
文摘[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected land use type were examined in Hainan. [Result] The results showed that GRSP and SOC content of four artificial land use types decreased compared with the natural secondary forest land,the GRSP content of all samples ranged from 0.53-4.80 mg/g,accounting for 7.9%-23.4% of the SOC,which means that GRSP was one important component of SOC pool in soil. The ratio of GRSP to SOC was significantly different among land use types but the depths. GRSP and SOC exhibited obvious vertical distribution pattern. GRSP was significantly positively related to SOC and sand content but negatively related to silt and clay content. [Conclusion] The sand content determined the GRSP content significantly and loam was better matrix for GRSP accumulation than clay.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China (201503125,201503105)the National High Technology Research and Development Program of China (2011AA100504)
文摘Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.
基金supported by the National Natural Science Foundation of China (31171506 and 31071375)
文摘To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement of CO 2 fluxes in the rain-fed winter wheat field of the Chinese Loess Plateau. The results showed that the annual net ecosystem CO 2 exchange (NEE) was (-71.6±5.7) and (-65.3±5.3) g C m-2 y-1 for 2008-2009 and 2009-2010 crop years, respectively, suggesting that the agro-ecosystem was a carbon sink (117.4-126.2 g C m-2 yr-1). However, after considering the harvested grain, the agro- ecosystem turned into a moderate carbon source. The variations in NEE and ecosystem respiration (R eco ) were sensitive to changes in soil water content (SWC). When SWC ranged form 0.15 to 0.21 m3 m-3, we found a highly significant relationship between NEE and photosynthetically active radiation (PAR), and a highly significant relationship between R eco and soil temperature (T s ). However, the highly significant relationships were not observed when SWC was outside the range of 0.15-0.21 m3 m-3. Further, in spring, the R eco instantly responded to a rapid increase in SWC after effective rainfall events, which could induce 2 to 4-fold increase in daily R eco , whereas the R eco was also inhibited by heavy summer rainfall when soils were saturated. Accumulated R eco in summer fallow period decreased carbon fixed in growing season by 16- 25%, indicating that the period imposed negative impacts on annual carbon sequestration.