This study develops a way of analyzing moisture movement in unsaturated expansive soil slope. The basic equations and the integrated finite difference method for moisture movement in unsaturated soils are briefly desc...This study develops a way of analyzing moisture movement in unsaturated expansive soil slope. The basic equations and the integrated finite difference method for moisture movement in unsaturated soils are briefly described, and the calculation code MFUS2 has been developed. The moisture movements in unsaturated expansive soil slopes suffering precipitation were simulated numerically. The simulation results show that expansion or contraction must be taken into account in an analysis model. A simplified equivalent model for calculating rainwater infiltration into expansive soil slopes has been developed. The simplified equivalent model divides the soil slope into two layers according to the extent of weathering of the soil mass at depth. Layer Ⅰ is intensively weathered and moisture can be fully evaporated or rapidly absorbed. The moisture movement parameters take into account the greater soil permeability caused by fissures. Layer Ⅱ is unweathered and the soil is basically undisturbed. The moisture movement parameters of homogeneous soils are applicable. The moisture movements in unsaturated ex- pansive soil slopes suffering precipitation were simulated numerically using the simplified equivalent model. The simulation results show that the moisture movement in the expansive soil slope under rainfall permeation mainly takes place in the extensively weathered layer Ⅰ which closely simulates the real situation.展开更多
Manufacture of eco-friendly chrome-free leather is of great significance for realizing sustainable development of leather industry.Conventional tanning theory believes that it is impossible to convert raw hide to leat...Manufacture of eco-friendly chrome-free leather is of great significance for realizing sustainable development of leather industry.Conventional tanning theory believes that it is impossible to convert raw hide to leather without the utilization of cross-linking agent(e.g.,chrome salts)among collagen fibers in raw hide.Here,we developed a brand-new leather manufacture strategy that relied on the composite dehydration media enabled self-driven directional dehydration mechanism to accomplish chrome-free leather manufacture for the first time,rather than followed the classic cross-linking mechanism that has been obeyed for more than one century in leather industry.We demonstrated that the essence of leather making is to regulate the water content in raw hide rather than to form cross-linkage among collagen fibers.The composite dehydration media comprised of anhydrous ethanol and molecular sieves(3A activated zeolite powder)successfully guaranteed continuous self-driven directional dehydration of raw hide by establishing stable water concentration gradient between raw hide and ethanol,which significantly increased the dispersity of collagen fibers in raw hide(with the water content reduced from 56.07%to 5.20%),thus obtaining chrome-free leather that is more ecological than chrome-tanned leather due to the elimination of any tanning agent.The as-prepared chrome-free leather exhibited outstanding tear force(174.86 N),tensile strength(24.56 N mm−2),elongation at break(53.28%)and dry-thermal stability,superior to chrome-tanned leather.Notably,the used compos-ite dehydration media was recyclable for chrome-free leather manufacture,therefore facilitating an environmentally benign leather manufacture process.Our investigations are expected to open up a new conceptual leather making strategy that is applicable for realizing substantial manufacture of eco-friendly leather.展开更多
文摘This study develops a way of analyzing moisture movement in unsaturated expansive soil slope. The basic equations and the integrated finite difference method for moisture movement in unsaturated soils are briefly described, and the calculation code MFUS2 has been developed. The moisture movements in unsaturated expansive soil slopes suffering precipitation were simulated numerically. The simulation results show that expansion or contraction must be taken into account in an analysis model. A simplified equivalent model for calculating rainwater infiltration into expansive soil slopes has been developed. The simplified equivalent model divides the soil slope into two layers according to the extent of weathering of the soil mass at depth. Layer Ⅰ is intensively weathered and moisture can be fully evaporated or rapidly absorbed. The moisture movement parameters take into account the greater soil permeability caused by fissures. Layer Ⅱ is unweathered and the soil is basically undisturbed. The moisture movement parameters of homogeneous soils are applicable. The moisture movements in unsaturated ex- pansive soil slopes suffering precipitation were simulated numerically using the simplified equivalent model. The simulation results show that the moisture movement in the expansive soil slope under rainfall permeation mainly takes place in the extensively weathered layer Ⅰ which closely simulates the real situation.
基金The National Natural Science Foundation of China(No.22178232,No.21978176)the National Natural Science Funds for Excellent Youth Scholars(No.21922808)+2 种基金the National Key Research and Development Program(No.2018YFC1901101)the Key Research and Development Program of Science and Technology Department of Sichuan Province(2021ZYCD009)the Program of Sichuan University Featured Research Groups in Engineering Disciplines.
文摘Manufacture of eco-friendly chrome-free leather is of great significance for realizing sustainable development of leather industry.Conventional tanning theory believes that it is impossible to convert raw hide to leather without the utilization of cross-linking agent(e.g.,chrome salts)among collagen fibers in raw hide.Here,we developed a brand-new leather manufacture strategy that relied on the composite dehydration media enabled self-driven directional dehydration mechanism to accomplish chrome-free leather manufacture for the first time,rather than followed the classic cross-linking mechanism that has been obeyed for more than one century in leather industry.We demonstrated that the essence of leather making is to regulate the water content in raw hide rather than to form cross-linkage among collagen fibers.The composite dehydration media comprised of anhydrous ethanol and molecular sieves(3A activated zeolite powder)successfully guaranteed continuous self-driven directional dehydration of raw hide by establishing stable water concentration gradient between raw hide and ethanol,which significantly increased the dispersity of collagen fibers in raw hide(with the water content reduced from 56.07%to 5.20%),thus obtaining chrome-free leather that is more ecological than chrome-tanned leather due to the elimination of any tanning agent.The as-prepared chrome-free leather exhibited outstanding tear force(174.86 N),tensile strength(24.56 N mm−2),elongation at break(53.28%)and dry-thermal stability,superior to chrome-tanned leather.Notably,the used compos-ite dehydration media was recyclable for chrome-free leather manufacture,therefore facilitating an environmentally benign leather manufacture process.Our investigations are expected to open up a new conceptual leather making strategy that is applicable for realizing substantial manufacture of eco-friendly leather.