Purpose: This study explores how search motivation and context influence mobile Web search behaviors. Design/methodology/approach: We studied 30 experienced mobile Web users via questionnaires, semi-structured inter...Purpose: This study explores how search motivation and context influence mobile Web search behaviors. Design/methodology/approach: We studied 30 experienced mobile Web users via questionnaires, semi-structured interviews, and an online diary tool that participants used to record their daily search activities. SQLite Developer was used to extract data from the users' phone logs for correlation analysis in Statistical Product and Service Solutions (SPSS). Findings: One quarter of mobile search sessions were driven by two or more search motivations. It was especially difficult to distinguish curiosity from time killing in particular user reporting. Multi-dimensional contexts and motivations influenced mobile search behaviors, and among the context dimensions, gender, place, activities they engaged in while searching, task importance, portal, and interpersonal relations (whether accompanied or alone when searching) correlated with each other. Research limitations: The sample was comprised entirely of college students, so our findings may not generalize to other populations. More participants and longer experimental duration will improve the accuracy and objectivity of the research. Practical implications: Motivation analysis and search context recognition can help mobile service providers design applications and services for particular mobile contexts and usages. Originality/value: Most current research focuses on specific contexts, such as studies on place, or other contextual influences on mobile search, and lacks a systematic analysis of mobile search context. Based on analysis of the impact of mobile search motivations and search context on search behaviors, we built a multi-dimensional model of mobile search behaviors.展开更多
A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa...A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).展开更多
基金supported by the Wuhan International Science and Technology Cooperation Fund (Grant No.:2015030809020371)the Wuhan University Youth Fund of Humanities and Social Sciences
文摘Purpose: This study explores how search motivation and context influence mobile Web search behaviors. Design/methodology/approach: We studied 30 experienced mobile Web users via questionnaires, semi-structured interviews, and an online diary tool that participants used to record their daily search activities. SQLite Developer was used to extract data from the users' phone logs for correlation analysis in Statistical Product and Service Solutions (SPSS). Findings: One quarter of mobile search sessions were driven by two or more search motivations. It was especially difficult to distinguish curiosity from time killing in particular user reporting. Multi-dimensional contexts and motivations influenced mobile search behaviors, and among the context dimensions, gender, place, activities they engaged in while searching, task importance, portal, and interpersonal relations (whether accompanied or alone when searching) correlated with each other. Research limitations: The sample was comprised entirely of college students, so our findings may not generalize to other populations. More participants and longer experimental duration will improve the accuracy and objectivity of the research. Practical implications: Motivation analysis and search context recognition can help mobile service providers design applications and services for particular mobile contexts and usages. Originality/value: Most current research focuses on specific contexts, such as studies on place, or other contextual influences on mobile search, and lacks a systematic analysis of mobile search context. Based on analysis of the impact of mobile search motivations and search context on search behaviors, we built a multi-dimensional model of mobile search behaviors.
基金Supported by the National Natural Science Foundation of China(61103157)
文摘A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).