High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of gr...High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.展开更多
In-situ conversion presents a promising technique for exploiting continental oil shale formations,characterized by highly fractured organic-rich rock.A 3D in-situ conversion model,which incorporates a discrete fractur...In-situ conversion presents a promising technique for exploiting continental oil shale formations,characterized by highly fractured organic-rich rock.A 3D in-situ conversion model,which incorporates a discrete fracture network,is developed using a self-developed thermal-flow-chemical(TFC)simulator.Analysis of the model elucidates the in-situ conversion process in three stages and defines the transformation of fluids into three distinct outcomes according to their end stages.The findings indicate that kerogen decomposition increases fluid pressure,activating fractures and subsequently enhancing permeability.A comprehensive analysis of activated fracture permeability and heating power reveals four distinct production modes,highlighting that increasing heating power correlates with higher cumulative fluid production.Activated fractures,with heightened permeability,facilitate the mobility of heavy oil toward production wells but hinder its cracking,thereby limiting light hydrocarbon production.Additionally,energy efficiency research demonstrates the feasibility of the in-situ conversion in terms of energy utilization,especially when considering the surplus energy from high-fluctuation energy sources such as wind and solar power to provide heating.展开更多
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq...Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.展开更多
By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and develop...By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and development difficulties of shale oil in the Jiyang continental rift lake basin,East China,the development technology system suitable for the geological characteristics of shale oil in continental rift lake basins has been primarily formed through innovation and iteration of the development,drilling and fracturing technologies.The technology system supports the rapid growth of shale oil production and reduces the development investment cost.By comparing it with the shale oil development technology in the United States,the prospect of the shale oil development technology iteration in continental rift lake basins is proposed.It is suggested to continuously strengthen the overall three-dimensional development,improve the precision level of engineering technology,upgrade the engineering technical indicator system,accelerate the intelligent optimization of engineering equipment,explore the application of complex structure wells,form a whole-process integrated quality management system from design to implementation,and constantly innovate the concept and technology of shale oil development,so as to promote the realization of extensive,beneficial and high-quality development of shale oil in continental rift lake basins.展开更多
This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gaug...This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gauge data at stations Hong Kong,Zhapo and Qinglan and sea surface wind data from January 1 to February 28,2021 are used to examine the relationship between along-shelf wind and sea level fluctuation.Two events of CSWs driven by the along-shelf sea surface wind are detected from wavelet spectra of tidal gauge data.The signals are triply peaked at periods of 56 h,94 h and 180 h,propagating along the coast with phase speed ranging from 6.9 m/s to18.9 m/s.The dispersion relation shows their property of the Kelvin mode of CSW.We develop a simple method to estimate amplitude of sea surface fluctuation by along-shelf wind.The results are comparable with the observation data,suggesting it is effective.The mode 2 CSWs fits very well with the mooring current velocity data.The results from rare current help to understand wave-current interaction in the northwestern SCS.展开更多
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiment...Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.展开更多
The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability...The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.展开更多
Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the ...Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there.展开更多
The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust i...The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.展开更多
A distinct echo-character was assigned to sedimentation processes, which were then verified using data from surface sediment samples and piston cores. of echo types on the continental slope perfectly reflecting both s...A distinct echo-character was assigned to sedimentation processes, which were then verified using data from surface sediment samples and piston cores. of echo types on the continental slope perfectly reflecting both sediment erosion and deposition, four edimentary types have been recognized:(1) submarine clides distributed on the shelfbreak and characterized by high silt and water conten, loose struture, poor consolidation and low shearing strength; (2) slumps occurring on the shelfbreak, middle slope channel and reef margin near Dongsha Islands, but having different origins; (3) debris flow occurring either in sea areas around Dongsha Atoll, or on the continental slope’s three channels, where the transparent debris flow deposits often overlie or abruptly truncate highly stratified hemipelagic sediments;are of limited to local extent, ranging from a few square kilometers to hundreds of square kilometers in area; but on the lowr slope, usually occur as 1000 km2, about 100 km2 individual complexes; and (4) turbidites, limited on the continental slope; are occurring as migrating waves of sediments at the the of the slope, and are rhythmically-bedded, coarse-grained. Their migration is a result of overbank flow downslope through the submarine channel at the west. The slope faces are dominated by mass wasting deposition, and a few turbidite current sediments. As wasting is an important process. Some debris flow eomplexes on the west are buried by well-stratified confomable sediments, whereas others on the east appear on the present seafloor and therefore are relatively recent.展开更多
Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive pe...Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margin and mineralisation. For the most part these are global signatures, and the peaks of ages tend to b associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios o zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods o crustal thickening associated with compressional tectonics and the development of supercontinents Magma types similar to those from recent within-plate and subduction related settings appear to hav been generated in different areas at broadly similar times before ~3.0 Ga. It can be difficult to put th results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust The development of crustal growth models for the continental crust are discussed, and a number o models based on different data sets indicate that 65%-70% of the present volume of the continental crus was generated by 3 Ga. Such estimates may represent minimum values, but since ~3 Ga there has been reduction in the rates of growth of the continental crust. This reduction is linked to an increase in th rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates a which continental crust was generated. Plate tectonics results in both the generation of new crust and it destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ~3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism b which new continental crust was generated.展开更多
There are large-scale Mesozoic bimodal igneous rock associations on the continental margin of southeastern China. They aroused extensive attention in the 1980s because of their specific tectonic implications, and have...There are large-scale Mesozoic bimodal igneous rock associations on the continental margin of southeastern China. They aroused extensive attention in the 1980s because of their specific tectonic implications, and have been found frequently during recent geological surveys. This paper reviews the studies of regional Mesozoic bimodal rocks, and concludes that they can be subdivided into three stages, i.e., the Early Jurassic (209-170 Ma, the first (Ⅰ) stage), the Late Jurassic-early Early Cretaceous (154-121 Ma, the second (Ⅱ) stage), and the late Early Cretaceous-Late Cretaceous (115-85 Ma, the third (Ⅲ) stage). These three stages of bimodal rocks were formed in different tectonic settings, and are important indicators for regional Mesozoic tectonic evolution.展开更多
This paper studied an architecture model of turbidite channel systems based on the shallow- layer high resolution 3D seismic information in the deepwater area in the Niger Delta continental slope, West Africa as a pro...This paper studied an architecture model of turbidite channel systems based on the shallow- layer high resolution 3D seismic information in the deepwater area in the Niger Delta continental slope, West Africa as a prototype model. Different types of channel systems were identified and the corresponding architecture models were established. The controlling factors, evaluation criteria and spatial distribution of different channel systems were analyzed. This study shows that turbidite channel systems of West Africa could be classified into three types; confined, semi-confined and unconfined, according to the condition of canyon and the levees on both sides. Oil one hand, along the transport direction, channel system evolves from confined to unconfined. Within channel systems, channel complexes, including two types of incised and enveloped, are the most important reservoir bodies. On the other hand, there is a channel complex evolution from incised to enveloped vertically. The geological factors exert impacts of different levels on the architecture of the turbidite channels in different sedimentary systems or even within the same system.展开更多
The Red-crowned Crane (Grus japonensis) is a globally endangered species.Although this species has received much attention by scientists,conservationists and the general public,the continental population of the Red-cr...The Red-crowned Crane (Grus japonensis) is a globally endangered species.Although this species has received much attention by scientists,conservationists and the general public,the continental population of the Red-crowned Crane continues to face serious threats which affect not only its population dynamics but also its breeding and wintering habitats.Habitat loss and deterioration are the main causes of the decline of its population.With the massive loss of habitats in all parts of its range - breeding,stopover and wintering grounds - the cranes have been forced into crops and farmlands where cranes are more vulnerable to human activities,such as poisoning the cranes and conflicts with farmers.From our review of studies done over 30 years,the eastern flyway subpopulation has been stable or slightly increasing and the western flyway subpopulation of the Red-crowned Crane has sharply declined in recent years.The wintering population for the western flyway has declined from over 1100 to less than 500 birds.Not only is the size of the population reduced to less than 50%,but most recently the decline has occurred with frightening speed,by 50-150 birds per winter.The current wintering range for the west flyway is only about 8% of its extent in the 1980s.Urgent actions for habitat protection,law enforcement and education need to stop the declining trend for this species.展开更多
Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological in...Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological interface. The absorption of the near-surface layer decreases the resolution of the seismic wavelet, intensifies the interference of seismic reflections from different sand bodies, and makes seismic data interpretation of thin interbedded strata more complex and difficult. In order to concretely investigate and analyze the effects of the near-surface absorption on seismic reflection characteristics of interbedded strata, and to make clear the ability of current technologies to compensate the near-surface absorption, a geological model of continental interbedded strata with near-surface absorption was designed, and the prestack seismic wave field was numerically simulated with wave equations. Then, the simulated wave field was processed by the prestack time migration, the effects of near-surface absorption on prestack and poststack reflection characteristics were analyzed, and the near-surface absorption was compensated for by inverse Q-filtering. The model test shows that: (1) the reliability of prediction and delineation of a continental reservoir with AVO inversion is degraded due to the lateral variation of the near-surface structure; (2) the corresponding relationships between seismic reflection events and geological interfaces are further weakened as a result of near-surface absorption; and (3) the current technology of absorption compensation probably results in false geological structure and anomaly. Based on the model experiment, the real seismic data of the Dagang Oil Field were analyzed and processed. The seismic reflection characteristics of continental interbedded strata were improved, and the reliability of geological interpretation from seismic data was enhanced.展开更多
Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, an...Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived from the mantle plume, and there was no or little crustal contamination during magma ascent en route to the surface. They were generated by 7% partial melting of garnet peridotite. The axis of the plume might be located beneath Lijiang Town, Yunnan province.展开更多
Abstract Greenstone belts of the eastern Dharwar Craton, India are reinterpreted as composite tecto- nostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new hig...Abstract Greenstone belts of the eastern Dharwar Craton, India are reinterpreted as composite tecto- nostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data. The former are dominated by a komatiite plus Mg-tholeiitic basalt volcanic association, with deep water siliciclastic and banded iron formation (BIF) sedimentary rocks. Plumes melted at 〈90 km under thin rifted continental lithosphere to preserve intrao- ceanic and continental margin aspects. Associated alkaline basalts record subduction-recycling of Me- soarchean oceanic crust, incubated in the asthenosphere, and erupted coevally with Mg basalts from a heterogeneous mantle plume. Together, komatiites-Mg basalts-alkaline basalts plot along the Phanero- zoic mantle array in Th/Yb versus Nb/Yb coordinate space, representing zoned plumes, establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts compo- sitionally similar to recent intraoceanic arcs. As well, boninitic flows sourced in extremely depleted mantle are present, and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young (〈20 Ma), hot, oceanic litho- sphere. Consequently, Cenozoic style "hot" subduction was operating in the Neoarchean. These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at -2.7 Ga, coevally with a global accretionary orogen at -2.7 Ga, and associated orogenic gold mineralization.展开更多
The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T cond...The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.展开更多
基金financially supported by the State Key Research Development Program of China(Grant No.2022YFF0800903)the National Natural Science Foundation of China(NSFC)(Grant Nos.42261144669 and 42273073)。
文摘High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.
基金supported by the National Natural Science Foundation of China (Grant No.42090023)the Alliance of International Science Organization (ANSO)Scholarship for Young Talents+3 种基金the Key Deployment Program of Chinese Academy of Sciences (YJKYYQ20190043,ZDBS-LY-DQC003,KFZD-SW-422,ZDRW-ZS-2021-3-1)the Scientific Research and Technology Development Project of China National Petroleum Corpo ration (2022DJ5503)the CAS Key Technology Talent ProgramSupercomputing Laboratory,IGGCAS。
文摘In-situ conversion presents a promising technique for exploiting continental oil shale formations,characterized by highly fractured organic-rich rock.A 3D in-situ conversion model,which incorporates a discrete fracture network,is developed using a self-developed thermal-flow-chemical(TFC)simulator.Analysis of the model elucidates the in-situ conversion process in three stages and defines the transformation of fluids into three distinct outcomes according to their end stages.The findings indicate that kerogen decomposition increases fluid pressure,activating fractures and subsequently enhancing permeability.A comprehensive analysis of activated fracture permeability and heating power reveals four distinct production modes,highlighting that increasing heating power correlates with higher cumulative fluid production.Activated fractures,with heightened permeability,facilitate the mobility of heavy oil toward production wells but hinder its cracking,thereby limiting light hydrocarbon production.Additionally,energy efficiency research demonstrates the feasibility of the in-situ conversion in terms of energy utilization,especially when considering the surplus energy from high-fluctuation energy sources such as wind and solar power to provide heating.
基金The National Natural Science Foundation of China under contract No. 42076078China–Mozambique Joint Cruise under contract No. GASI-01-DLJHJ-CM。
文摘Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.
基金Supported by the Strategic Research and Technical Consultation Project of Sinopec Science and Technology CommissionSinopec Major Science and Technology Project(P22037)。
文摘By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and development difficulties of shale oil in the Jiyang continental rift lake basin,East China,the development technology system suitable for the geological characteristics of shale oil in continental rift lake basins has been primarily formed through innovation and iteration of the development,drilling and fracturing technologies.The technology system supports the rapid growth of shale oil production and reduces the development investment cost.By comparing it with the shale oil development technology in the United States,the prospect of the shale oil development technology iteration in continental rift lake basins is proposed.It is suggested to continuously strengthen the overall three-dimensional development,improve the precision level of engineering technology,upgrade the engineering technical indicator system,accelerate the intelligent optimization of engineering equipment,explore the application of complex structure wells,form a whole-process integrated quality management system from design to implementation,and constantly innovate the concept and technology of shale oil development,so as to promote the realization of extensive,beneficial and high-quality development of shale oil in continental rift lake basins.
基金The National Key R&D Program of China under contract No.2022YFC3104805the National Natural Science Foundation of China under contract Nos 42276019,41706025 and 41976200+4 种基金the Innovation Team Plan for Universities in Guangdong Province under contract No.2019KCXTF021the First-class Discipline Plan of Guangdong Province under contract Nos 080503032101and 231420003the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.060302032106the Open Fund Project of Key Laboratory of Marine Environmental Information Technology(2019)Ministry of Natural Resources。
文摘This study aims to investigate characteristics of continental shelf wave(CSW)on the northwestern continental shelf of the South China Sea(SCS)induced by winter storms in 2021.Mooring and cruise observations,tidal gauge data at stations Hong Kong,Zhapo and Qinglan and sea surface wind data from January 1 to February 28,2021 are used to examine the relationship between along-shelf wind and sea level fluctuation.Two events of CSWs driven by the along-shelf sea surface wind are detected from wavelet spectra of tidal gauge data.The signals are triply peaked at periods of 56 h,94 h and 180 h,propagating along the coast with phase speed ranging from 6.9 m/s to18.9 m/s.The dispersion relation shows their property of the Kelvin mode of CSW.We develop a simple method to estimate amplitude of sea surface fluctuation by along-shelf wind.The results are comparable with the observation data,suggesting it is effective.The mode 2 CSWs fits very well with the mooring current velocity data.The results from rare current help to understand wave-current interaction in the northwestern SCS.
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
基金Supported by the National Natural Science Foundation of China(U22B6004)Scientific Research and Technological Development Project of RIPED(2022yjcq03)Technology Research Project of PetroChina Changqing Oilfield Company(KJZX2023-01)。
文摘Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.
文摘The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.
基金supported by the Chinese Scholarship Foundation,the Gravity and Magnetics Research Consortium(GMRC)the National Natural Science Foundation of China(No.41074095)+1 种基金the National Special Project(No.201011039)the Open Project of the National Key Laboratory for Geological Processes and Mineral Resources(No.GPMR0942)
文摘Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there.
文摘The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.
文摘A distinct echo-character was assigned to sedimentation processes, which were then verified using data from surface sediment samples and piston cores. of echo types on the continental slope perfectly reflecting both sediment erosion and deposition, four edimentary types have been recognized:(1) submarine clides distributed on the shelfbreak and characterized by high silt and water conten, loose struture, poor consolidation and low shearing strength; (2) slumps occurring on the shelfbreak, middle slope channel and reef margin near Dongsha Islands, but having different origins; (3) debris flow occurring either in sea areas around Dongsha Atoll, or on the continental slope’s three channels, where the transparent debris flow deposits often overlie or abruptly truncate highly stratified hemipelagic sediments;are of limited to local extent, ranging from a few square kilometers to hundreds of square kilometers in area; but on the lowr slope, usually occur as 1000 km2, about 100 km2 individual complexes; and (4) turbidites, limited on the continental slope; are occurring as migrating waves of sediments at the the of the slope, and are rhythmically-bedded, coarse-grained. Their migration is a result of overbank flow downslope through the submarine channel at the west. The slope faces are dominated by mass wasting deposition, and a few turbidite current sediments. As wasting is an important process. Some debris flow eomplexes on the west are buried by well-stratified confomable sediments, whereas others on the east appear on the present seafloor and therefore are relatively recent.
基金supported by grants from the LeverhulmeTrust RPG-2015-422 and EM-2017-047\4 to Chris HawkesworthNERC NE/K008862/1 to Bruno Dhuimefrom AustralianResearch Council FL160100168 to Peter A. Cawood
文摘Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margin and mineralisation. For the most part these are global signatures, and the peaks of ages tend to b associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios o zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods o crustal thickening associated with compressional tectonics and the development of supercontinents Magma types similar to those from recent within-plate and subduction related settings appear to hav been generated in different areas at broadly similar times before ~3.0 Ga. It can be difficult to put th results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust The development of crustal growth models for the continental crust are discussed, and a number o models based on different data sets indicate that 65%-70% of the present volume of the continental crus was generated by 3 Ga. Such estimates may represent minimum values, but since ~3 Ga there has been reduction in the rates of growth of the continental crust. This reduction is linked to an increase in th rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates a which continental crust was generated. Plate tectonics results in both the generation of new crust and it destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ~3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism b which new continental crust was generated.
基金the NationalNatural Science Foundation of China(Grant 40002005)the 1:250,000-scale Regional Survey Program-theShengxian sheet(No.20001300006141) the ChinaGeological Survey Comprehensive Research Program(No.200113000053).
文摘There are large-scale Mesozoic bimodal igneous rock associations on the continental margin of southeastern China. They aroused extensive attention in the 1980s because of their specific tectonic implications, and have been found frequently during recent geological surveys. This paper reviews the studies of regional Mesozoic bimodal rocks, and concludes that they can be subdivided into three stages, i.e., the Early Jurassic (209-170 Ma, the first (Ⅰ) stage), the Late Jurassic-early Early Cretaceous (154-121 Ma, the second (Ⅱ) stage), and the late Early Cretaceous-Late Cretaceous (115-85 Ma, the third (Ⅲ) stage). These three stages of bimodal rocks were formed in different tectonic settings, and are important indicators for regional Mesozoic tectonic evolution.
基金supported by Open Fund(PLC201203)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology)National Science and Technology Major Project(2011ZX05030-005)Major Project of Education Department in Sichuan Province(13ZA0177)
文摘This paper studied an architecture model of turbidite channel systems based on the shallow- layer high resolution 3D seismic information in the deepwater area in the Niger Delta continental slope, West Africa as a prototype model. Different types of channel systems were identified and the corresponding architecture models were established. The controlling factors, evaluation criteria and spatial distribution of different channel systems were analyzed. This study shows that turbidite channel systems of West Africa could be classified into three types; confined, semi-confined and unconfined, according to the condition of canyon and the levees on both sides. Oil one hand, along the transport direction, channel system evolves from confined to unconfined. Within channel systems, channel complexes, including two types of incised and enveloped, are the most important reservoir bodies. On the other hand, there is a channel complex evolution from incised to enveloped vertically. The geological factors exert impacts of different levels on the architecture of the turbidite channels in different sedimentary systems or even within the same system.
文摘The Red-crowned Crane (Grus japonensis) is a globally endangered species.Although this species has received much attention by scientists,conservationists and the general public,the continental population of the Red-crowned Crane continues to face serious threats which affect not only its population dynamics but also its breeding and wintering habitats.Habitat loss and deterioration are the main causes of the decline of its population.With the massive loss of habitats in all parts of its range - breeding,stopover and wintering grounds - the cranes have been forced into crops and farmlands where cranes are more vulnerable to human activities,such as poisoning the cranes and conflicts with farmers.From our review of studies done over 30 years,the eastern flyway subpopulation has been stable or slightly increasing and the western flyway subpopulation of the Red-crowned Crane has sharply declined in recent years.The wintering population for the western flyway has declined from over 1100 to less than 500 birds.Not only is the size of the population reduced to less than 50%,but most recently the decline has occurred with frightening speed,by 50-150 birds per winter.The current wintering range for the west flyway is only about 8% of its extent in the 1980s.Urgent actions for habitat protection,law enforcement and education need to stop the declining trend for this species.
基金supported by the National 973 Key Basic Research Development Program(No. 2007CB209608)National 863 High Technology Research Development Program(No.2007AA06Z218)
文摘Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological interface. The absorption of the near-surface layer decreases the resolution of the seismic wavelet, intensifies the interference of seismic reflections from different sand bodies, and makes seismic data interpretation of thin interbedded strata more complex and difficult. In order to concretely investigate and analyze the effects of the near-surface absorption on seismic reflection characteristics of interbedded strata, and to make clear the ability of current technologies to compensate the near-surface absorption, a geological model of continental interbedded strata with near-surface absorption was designed, and the prestack seismic wave field was numerically simulated with wave equations. Then, the simulated wave field was processed by the prestack time migration, the effects of near-surface absorption on prestack and poststack reflection characteristics were analyzed, and the near-surface absorption was compensated for by inverse Q-filtering. The model test shows that: (1) the reliability of prediction and delineation of a continental reservoir with AVO inversion is degraded due to the lateral variation of the near-surface structure; (2) the corresponding relationships between seismic reflection events and geological interfaces are further weakened as a result of near-surface absorption; and (3) the current technology of absorption compensation probably results in false geological structure and anomaly. Based on the model experiment, the real seismic data of the Dagang Oil Field were analyzed and processed. The seismic reflection characteristics of continental interbedded strata were improved, and the reliability of geological interpretation from seismic data was enhanced.
基金the National Key Fundamental Research Project(No.G1999043205) the National National Science Foundation of China(Nos.40273020 , 40172026) Program of Excellent Young Scientists of the Ministry of Land and Resources.
文摘Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived from the mantle plume, and there was no or little crustal contamination during magma ascent en route to the surface. They were generated by 7% partial melting of garnet peridotite. The axis of the plume might be located beneath Lijiang Town, Yunnan province.
基金Department of Science and Technology(DST) for funding the Projects on Dharwar Craton
文摘Abstract Greenstone belts of the eastern Dharwar Craton, India are reinterpreted as composite tecto- nostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data. The former are dominated by a komatiite plus Mg-tholeiitic basalt volcanic association, with deep water siliciclastic and banded iron formation (BIF) sedimentary rocks. Plumes melted at 〈90 km under thin rifted continental lithosphere to preserve intrao- ceanic and continental margin aspects. Associated alkaline basalts record subduction-recycling of Me- soarchean oceanic crust, incubated in the asthenosphere, and erupted coevally with Mg basalts from a heterogeneous mantle plume. Together, komatiites-Mg basalts-alkaline basalts plot along the Phanero- zoic mantle array in Th/Yb versus Nb/Yb coordinate space, representing zoned plumes, establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts compo- sitionally similar to recent intraoceanic arcs. As well, boninitic flows sourced in extremely depleted mantle are present, and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young (〈20 Ma), hot, oceanic litho- sphere. Consequently, Cenozoic style "hot" subduction was operating in the Neoarchean. These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at -2.7 Ga, coevally with a global accretionary orogen at -2.7 Ga, and associated orogenic gold mineralization.
基金supported by the National Natural Science Foundation of China (grants No.41576048,41202080 and 41176052)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) (grant No.PLC201402)+1 种基金the Youth Innovation Promotion Association CAS (2016312)the Scientific Cooperative Project by CNPC and CAS (2015A-4813)
文摘The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.