High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a b...High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.展开更多
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ...Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.展开更多
The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geody...The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Tintinnids were enumerated and identified in samples collected from 36 stations between 18°-22°N, 107°-122 °E in the northern South China Sea (NSCS). 44 species belonging to 24 genera of tintinni...Tintinnids were enumerated and identified in samples collected from 36 stations between 18°-22°N, 107°-122 °E in the northern South China Sea (NSCS). 44 species belonging to 24 genera of tintinnids were recorded. The dominant species were He/icostome/la /onga and Tintinnopsis radix. Tintinnids abundance ranged from 0 to 2 200 cell/L, and mean abundance was 221cell/L in the surface water. Tintinnids abundance and species numbers decreased from coast to offshore. Upwelling and Pearl River discharge influenced the distribution of tintinnids by regulating nutrients supply. Maximum abundance (2 200 cell/L) was found in the surface water of A1. Tintinnids abundance showed positive relationship with chlorophyll a (Chl a) concentration, and no significant relationship was found between tintinnids abundance and temperature.展开更多
As one of the biggest marginal seas in the western Pacific margin, the South China Sea (SCS) experienced continental rifting and seafloor spreading during the Cenozoic. The northern continental margin of the SCS is ...As one of the biggest marginal seas in the western Pacific margin, the South China Sea (SCS) experienced continental rifting and seafloor spreading during the Cenozoic. The northern continental margin of the SCS is classified as a passive continental margin. However, its depositional and structural evolution remains controversial, especially in the deep slope area. The lack of data hindered the correlation between continental shelf and oceanic basin, and prevented the establishment of sequence stratigraphic frame of the whole margin. The slope basins in the mid-northern margin of SCS developed in the Cenozoic; the sediments and basin infill recorded the geological history of the continental margin and the SCS spreading. Using multi-channel seismic dataset acquired in three survey cruises during 1987 to 2004, combined with the data of ODP Leg 184 core and industrial wells, we carried out the sequence stratigraphic division and correlation of the Cenozoic in the middle-northern margin of SCS with seismic profiles and sedimentary facies. We interpreted the seismic reflection properties including continuity, amplitude, fi'equency, reflection terminals, and 15 sequence boundaries of the Cenozoic in the study area, and correlated the well data in geological age. The depositional environment changed from river and lake, shallow bay to open-deep sea, in correspondence to tectonic events of syn-rifting, early drifting, and late drifting stages of basin evolution.展开更多
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil produ...The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.展开更多
The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T cond...The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.展开更多
The composition of phytoplankton and the dynamics of phytoplankton and bacterioplankton biomass (PB and BB, respectively) of Sanya Bay, South China Sea, were determined. A total of 168 species (67 genera) phytopla...The composition of phytoplankton and the dynamics of phytoplankton and bacterioplankton biomass (PB and BB, respectively) of Sanya Bay, South China Sea, were determined. A total of 168 species (67 genera) phytoplankton were identified, including BaciUariophyta (diatom, 128 species), Pyrrophyta (35 species), Cyanophyta (3 species), and Chrysophyta (2 species). Annual average zbundance of phytoplankton was 1.2 × 107 cells/m^3, with the highest abundance in autumn, and the lowest in summer. Annual average diversity index (H') and evenness (J) values were 3.96 and 0.70, respectively. Average chlorophyll-a was 2.5 mg/m^3, and the average PB was 124 mg C/m^3, with the highest value in autumn. Surface PB was higher than the bottom, except for summer. Annual mean bacterioplankton abundance and BB were 6.9 × 10^1l cells/m^3 and 13.8 mg C/m^3, respectively. The highest BB was found in summer, followed by winter, spring, and autumn. Surface BB was higher than bottom all year round. The spatial distribution patterns of PB and BB were very similar with the highest biomass in the estuary, and decreased seaward, primarily due to the terrestrial input from the Sanya River and influx of oceanic water. The main factor influencing PB and BB was dissolved inorganic nitrogen (DIN). Other factors such as temperature, which is above 22℃ throughout the year, had a negligible impact. The correlation between BB and PB was significant (P 〈 0.01). The annual average ratio of BB/PB was 0.12 (0.06-0.15). Phytoplankton primary production was one of the most important factors in controlling the distribution of bacterioplankton.展开更多
A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data. Thre...A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data. Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994 and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2℃against its surrounding areas is also observed by the satellite-derived SST data.展开更多
A study of the circulation in the northern South China Sea (SCS) is carried out with the aid of a three-dimensional, high-resolution regional ocean model. One control and two sensitivity experiments are performed to...A study of the circulation in the northern South China Sea (SCS) is carried out with the aid of a three-dimensional, high-resolution regional ocean model. One control and two sensitivity experiments are performed to qualitatively investigate the effects of surface wind forcing, Kuroshio intrusion, and bottom topographic influence on the circulation in the northern SCS. The model results show that a branch of the Kuroshio in the upper layer can intrude into the SCS and have direct influence on the circulation over the continental shelf break in the northern SCS. There are strong southward pressure gradients along a zonal belt largely seaward of the continental slope. The pressure gradients are opposite in the southern and northern parts of the Luzon Strait, indicating inflow and outflow through the strait, respectively. The sensitivity experiments suggest that the Kuroshio intrusion is responsible for generating the imposed pressure head along the shelf break and has no obvious seasonal variations. The lateral forcing through the Luzon Strait and Taiwan Strait can induce the southwestward slope current and the northeastward SCS Warm Current in the northern SCS. Without the lateral forcing, there is the continental slope. The wind forcing mainly causes the The wind-induced water pile-up results in the southward no high-pressure-gradient zonal belt seaward of seasonal variation of the circulation in the SCS. high pressure gradient along the northwestern boundary of the basin. Without the blocking of the plateau around Dongsha Islands, the intruded Kuroshio tends to extend northwest and the SCS branch of the Kuroshio becomes wider and stronger. The analyses presented here are qualitative in nature but should lead to a better understanding of the oceanic responses in the northern SCS to these external influence factors.展开更多
Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but ...Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but with strong heterogeneity. Through the analysis of trace elements, organic macerals and biomarkers, it is indicated that plankton has made little contribution to Oligocene source rocks compared with the terrestrial higher plants. The organic matter preservation depends on hydrodynamics and the redox environment, and the former is the major factor in the study area. During the sedimentary period of the Yacheng Formation, tidal flats were developed in the central uplift zone, where the hydrodynamic conditions were weak and the input of terrestrial organic matter was abundant. So the Yacheng Salient of the central uplift zone is the most favorable area for the development of source rocks, followed by the central depression zone. During the sedimentary period of the Lingshui Formation, the organic matter input was sufficient in the central depression zone due to multiple sources of sediments. The semi-enclosed environment was favorable for organic matter accumulation, so high quality source rocks could be easily formed in this area, followed by the Yacheng salient of central uplift zone. Source rocks were less developed in the northern depression zone owing to poor preservation conditions,展开更多
Using the fuzzy cluster analysis and the temperature-salinity(T-S) similarity number analysis of cruise conductivity-temperature-depth(CTD) data in the upper layer(0–300 m) of the northern South China Sea(NSCS), we c...Using the fuzzy cluster analysis and the temperature-salinity(T-S) similarity number analysis of cruise conductivity-temperature-depth(CTD) data in the upper layer(0–300 m) of the northern South China Sea(NSCS), we classify the upper layer water of the NSCS into six water masses: diluted water(D), surface water(SS),the SCS subsurface water mass(U_S), the Pacific Ocean subsurface water mass(U_P), surface-subsurface mixed water(SU) and subsurface-intermediate mixed water(UI). A new stacked stereogram is used to illustrate the water mass distribution, and to examine the source and the distribution of U_P, combining with the sea surface height data and geostrophic current field. The results show that water mass U_P exists in all four seasons with the maximum range in spring and the minimum range in summer. In spring and winter, the U_P intrudes into the Luzon Strait and the southwest of Taiwan Island via the northern Luzon Strait in the form of nonlinear Rossby eddies, and forms a high temperature and high salinity zone east of the Dongsha Islands. In summer, the U_P is sporadically distributed in the study area. In autumn, the U_P is located in the upper 200 m layer east of Hainan Island.展开更多
Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters w...Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters were analyzed using FiSAT II software. Five species had isometric growth, two species had negative allometric growth, and one species had positive allometric growth. Overall, the exploitation rates of the eight species were lower in 2006 2007 than in 1997-1999: for four species (Saurida tumbil, Saurida undosquamis, Argyrosomus macrocephalus, and Nemipterus virgatus) it was lower in 2006-2007 than in 1997 1999, for two species (Parargyrops edita and Trichiurus haumela) it remained the same, and for the other two species (Trachurus japonicus and Decapterus maruadsi) it was higher in 2006~007 than in 1997-1999. The exploitation rates might have declined because of the decline in fishing intensity caused by high crude oil prices. The optimum exploitation rate, estimated using Beverton-Holt dynamic pool models, indicated that although fishes in the Beibu Gulf could sustain high exploitation rates, the under-size fishes at first capture resulted in low yields. To increase the yield per recruitment, it is more effective to increase the size at first capture than to control fishing effort.展开更多
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark whi...BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.展开更多
The mitre squid(U roteuthis chinensis) and the swordtip squid( U. edulis) are Indo-Pacific cephalopod species that are abundant in the western Pacific Ocean. They are currently exploited in the East and South China Se...The mitre squid(U roteuthis chinensis) and the swordtip squid( U. edulis) are Indo-Pacific cephalopod species that are abundant in the western Pacific Ocean. They are currently exploited in the East and South China Seas and make up a significant portion of the Chinese neritic squid catch. Beaks, the feeding organs of squid, are important for individual size and biomass estimation because of their high resistance to degradation in predator stomachs and consistent dimensions. In this study, 104 U. chinensis and 143 U. edulis individuals were sampled from northern South China Sea with mantle length from 70 to 260 mm and 96 to 284 mm, respectively. The results indicated that morphological beak values were greater for U. edulis, compared to U. chinensis, for upper hood length(UHL), upper crest length(UCL), upper lateral wall length(ULWL), lower crest length(LCL), and lower lateral wall length(LLWL). According to principal component analysis, UHL/ML, UCL/ML, ULWL/ML, LCL/ML, LLWL/ML and LWL/ML could represent the characteristics of beaks for U. chinensis, while UHL/ML, UCL/ML, ULWL/ML, LHL/ML, LCL/ML and LLWL/ML could represent it for U. edulis. According to Akaike's information criterion(AIC) values, a power function was the most suitable model for U. chinensis, while a linear function was the most suitable model for U. edulis. The beak variable-mantle length ratio(beak variable/mantle length) declined with the increasing of mantle length and declined sharply at the early stage of growth in both beaks and species. The ratio changed quickly after achieving the mantle length of 140 mm for U. chinensis, while the ratio changed quickly after 170 mm for U. edulis. Beaks in both species experienced sharper changes through maturity stage I to II than other maturity stages. This study gives us basic beak morphology information for U. chinensis and U. edulis in the East and South China Seas. Geometric morphological methods combined with dietary analysis should be used in the future.展开更多
The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and t...The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.展开更多
Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respec...Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respectively. A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene, in which the pre-Paleocene data dominate. The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin. Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones, and have REE features of crustal zircon. Zircon U-Pb dates of 2518-2481 Ma, 1933- 1724 Ma, and 1094-1040 Ma from the SCSV1 volcanics, and 2810-2718 Ma, 2458-2421 Ma, and 1850-993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea, well comparable with age records dated from the Cathaysia block. The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia, respectively. The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2. The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events. Their age signatures from the SCSV1 cover 266.5±3.5 Ma, 241.1±6.0 Ma, 184.0±4.2 Ma, 160.9±4.2 Ma and 102.8±2.6 Ma, and from the SCSV2 are 244±15 Ma, 158.1±3.5 Ma, 141±13 Ma and 96.3±2.1 Ma. Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement, Caledonian orogeny, and Indosinian orogeny to Yanshannian magmatism. This process can be well comparable with the tectonic evolution of South China, largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.展开更多
The northern continental margin of the South China Sea (SCS) is located within the tectonic system of Southeast Asia, an area with a great deal of tectonic migration due to the regional tectonic movements. The avail...The northern continental margin of the South China Sea (SCS) is located within the tectonic system of Southeast Asia, an area with a great deal of tectonic migration due to the regional tectonic movements. The available geological and geophysical data of the area are comprehensively analyzed in order to demonstrate the typical migration patterns of the Cenozoic tectonics in the northern SCS caused by the episodes of the Cenozoic tectonic movement. Furthermore, the lateral variation characteristics of the strata and the differ- ent evolution patterns of the main basins' features are assessed. It primarily focus on: (1) the Cenozoic epi- sodic rifting from north to south in the continental margin of the northern SCS; (2) the rifting and depression time of the main basins progressively become younger as one goes from north to south, signifying that the migration of both the tectonics and the sediments within the northern SCS travelled from north to south during the Cenozoic; and (3) the lateral tectonic migration on the direction of EW is not regular in total, but in some local areas the trending of the tectonic migration is from west to east. The analysis of the tectonic migration features of the northern SCS, in combination with the regional tectonic evolution background, indicates that the observed remote lagging effect, resulted from the India-Eurasia plate collision, is the main dynamic mechanism involved in the tectonic migration within the northern SCS. The tectonic migration has significant influence on both the organization of petroleum deposits and on the hydrocarbon accumulation within the basins in the northern SCS; comprehensive understanding of this dynamic system is of great reference value in predicting the hydrocarbon accumulation and has the potential to have an enormous impact in discovering new deep reservoirs for the future oil-gas exploration.展开更多
In situ observations, satellite data, and the output from an eddy-resolving ocean circulation model were used to study the generations and propagations of an anticyclonic eddy in the northern South China Sea (NSCS) ...In situ observations, satellite data, and the output from an eddy-resolving ocean circulation model were used to study the generations and propagations of an anticyclonic eddy in the northern South China Sea (NSCS) during the winter of 2009-2010. In the NSCS, the anticyclonic eddy firstly appeared to the west of the Luzon Strait, migrated generally along the continental slope and dissipated around the Xisha Archipela- go. The evolution of the warm eddy contains three phases: development, maturation, and decay. The eddy mainly stayed near 119.7°E in December and then gradually moved to 118.7°E until January 15, when its intensity, as indicated by the thermocline temperature and salinity anomalies, increased significantly, re- flecting the growth of the eddy. The eddy reached its peak on January 15 and persisted until February 23. During this period, the eddy propagated westward to 116.4°E. After, the warm eddy weakened significantly and dissipated finally near the Xisha Archipelago.展开更多
基金The National Natural Science Foundation of China under contract Nos 42366002 and 41702182the National Key R&D Program of China under contract No.2017YFA0603300the Guangxi Scientific Projects under contract No.2018GXNSFAA281293。
文摘High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.
基金The National Natural Science Foundation of China under contract No.42276066the Key Research and Development Program(International Science and Technology Cooperation Development Program)of Hainan Province under contract No.GHYF2022009the Youth Innovation Promotion Association of CAS under contract No.2018401.
文摘Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.
基金This research was funded by National Program on Global Change and Air-Sea Interaction,SOA(No.GASI-GEOGE-01)National Key Research and Development Program of China(2017YFC0601401 and 2016YFC0601002)+2 种基金Qingdao National Laboratory for Marine Science and Technology(2016ASKJ13,2017ASKJ02)the financially support from the Aoshan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology to Prof.Sanzhong Li(No.2015ASTP-0S10)the Taishan Scholar Program to Prof.Sanzhong Li
文摘The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金support for this study was provided by the National Science Committee through Grants NSC 40531006, U0633007, 40576052
文摘Tintinnids were enumerated and identified in samples collected from 36 stations between 18°-22°N, 107°-122 °E in the northern South China Sea (NSCS). 44 species belonging to 24 genera of tintinnids were recorded. The dominant species were He/icostome/la /onga and Tintinnopsis radix. Tintinnids abundance ranged from 0 to 2 200 cell/L, and mean abundance was 221cell/L in the surface water. Tintinnids abundance and species numbers decreased from coast to offshore. Upwelling and Pearl River discharge influenced the distribution of tintinnids by regulating nutrients supply. Maximum abundance (2 200 cell/L) was found in the surface water of A1. Tintinnids abundance showed positive relationship with chlorophyll a (Chl a) concentration, and no significant relationship was found between tintinnids abundance and temperature.
基金Supported by National Basic Research Program of China (973 Program) (No. 2007CB411703)the National Natural Science Foundation of China (No. 40806023)
文摘As one of the biggest marginal seas in the western Pacific margin, the South China Sea (SCS) experienced continental rifting and seafloor spreading during the Cenozoic. The northern continental margin of the SCS is classified as a passive continental margin. However, its depositional and structural evolution remains controversial, especially in the deep slope area. The lack of data hindered the correlation between continental shelf and oceanic basin, and prevented the establishment of sequence stratigraphic frame of the whole margin. The slope basins in the mid-northern margin of SCS developed in the Cenozoic; the sediments and basin infill recorded the geological history of the continental margin and the SCS spreading. Using multi-channel seismic dataset acquired in three survey cruises during 1987 to 2004, combined with the data of ODP Leg 184 core and industrial wells, we carried out the sequence stratigraphic division and correlation of the Cenozoic in the middle-northern margin of SCS with seismic profiles and sedimentary facies. We interpreted the seismic reflection properties including continuity, amplitude, fi'equency, reflection terminals, and 15 sequence boundaries of the Cenozoic in the study area, and correlated the well data in geological age. The depositional environment changed from river and lake, shallow bay to open-deep sea, in correspondence to tectonic events of syn-rifting, early drifting, and late drifting stages of basin evolution.
基金This study was supported by the project“the deep-water fan systems and petroleum resources in the South China Sea”(grant 40238060)sponsored by the Natural Science Foundation of China and the China National Offshore Oil Corporation.
文摘The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.
基金supported by the National Natural Science Foundation of China (grants No.41576048,41202080 and 41176052)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) (grant No.PLC201402)+1 种基金the Youth Innovation Promotion Association CAS (2016312)the Scientific Cooperative Project by CNPC and CAS (2015A-4813)
文摘The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.
基金part of the Young Scientist Fund of NSFC (No. 40806050)Knowledge Innovation Programof CAS (No. SQ200803)+3 种基金continually supported by Special Basic Research Funds (No. 2008FY110100)the Open Research Program Fund of the LMEB, SOA (No.200806)SKLOG, Institute of Geochemistry, CAS (No.OGL200605)MEL, Xiamen University (No. MEL0502).
文摘The composition of phytoplankton and the dynamics of phytoplankton and bacterioplankton biomass (PB and BB, respectively) of Sanya Bay, South China Sea, were determined. A total of 168 species (67 genera) phytoplankton were identified, including BaciUariophyta (diatom, 128 species), Pyrrophyta (35 species), Cyanophyta (3 species), and Chrysophyta (2 species). Annual average zbundance of phytoplankton was 1.2 × 107 cells/m^3, with the highest abundance in autumn, and the lowest in summer. Annual average diversity index (H') and evenness (J) values were 3.96 and 0.70, respectively. Average chlorophyll-a was 2.5 mg/m^3, and the average PB was 124 mg C/m^3, with the highest value in autumn. Surface PB was higher than the bottom, except for summer. Annual mean bacterioplankton abundance and BB were 6.9 × 10^1l cells/m^3 and 13.8 mg C/m^3, respectively. The highest BB was found in summer, followed by winter, spring, and autumn. Surface BB was higher than bottom all year round. The spatial distribution patterns of PB and BB were very similar with the highest biomass in the estuary, and decreased seaward, primarily due to the terrestrial input from the Sanya River and influx of oceanic water. The main factor influencing PB and BB was dissolved inorganic nitrogen (DIN). Other factors such as temperature, which is above 22℃ throughout the year, had a negligible impact. The correlation between BB and PB was significant (P 〈 0.01). The annual average ratio of BB/PB was 0.12 (0.06-0.15). Phytoplankton primary production was one of the most important factors in controlling the distribution of bacterioplankton.
文摘A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data. Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994 and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2℃against its surrounding areas is also observed by the satellite-derived SST data.
基金the National Natural Science Foundation of China(Nos. 40625017, 40576013)Scientific Research Founda-tion of South China Sea Institute of Oceanology, CAS (No.50601-77)+1 种基金Natural Science Foundation of GuangdongProvince of China (No. 2007A032600002)SSALTO/DUACS and dis-tributed by AVISO with support from CNES.
文摘A study of the circulation in the northern South China Sea (SCS) is carried out with the aid of a three-dimensional, high-resolution regional ocean model. One control and two sensitivity experiments are performed to qualitatively investigate the effects of surface wind forcing, Kuroshio intrusion, and bottom topographic influence on the circulation in the northern SCS. The model results show that a branch of the Kuroshio in the upper layer can intrude into the SCS and have direct influence on the circulation over the continental shelf break in the northern SCS. There are strong southward pressure gradients along a zonal belt largely seaward of the continental slope. The pressure gradients are opposite in the southern and northern parts of the Luzon Strait, indicating inflow and outflow through the strait, respectively. The sensitivity experiments suggest that the Kuroshio intrusion is responsible for generating the imposed pressure head along the shelf break and has no obvious seasonal variations. The lateral forcing through the Luzon Strait and Taiwan Strait can induce the southwestward slope current and the northeastward SCS Warm Current in the northern SCS. Without the lateral forcing, there is the continental slope. The wind forcing mainly causes the The wind-induced water pile-up results in the southward no high-pressure-gradient zonal belt seaward of seasonal variation of the circulation in the SCS. high pressure gradient along the northwestern boundary of the basin. Without the blocking of the plateau around Dongsha Islands, the intruded Kuroshio tends to extend northwest and the SCS branch of the Kuroshio becomes wider and stronger. The analyses presented here are qualitative in nature but should lead to a better understanding of the oceanic responses in the northern SCS to these external influence factors.
基金financially supported by the Major State Basic Research Development Program(973 Program)(Grant No.2009CB219402)
文摘Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but with strong heterogeneity. Through the analysis of trace elements, organic macerals and biomarkers, it is indicated that plankton has made little contribution to Oligocene source rocks compared with the terrestrial higher plants. The organic matter preservation depends on hydrodynamics and the redox environment, and the former is the major factor in the study area. During the sedimentary period of the Yacheng Formation, tidal flats were developed in the central uplift zone, where the hydrodynamic conditions were weak and the input of terrestrial organic matter was abundant. So the Yacheng Salient of the central uplift zone is the most favorable area for the development of source rocks, followed by the central depression zone. During the sedimentary period of the Lingshui Formation, the organic matter input was sufficient in the central depression zone due to multiple sources of sediments. The semi-enclosed environment was favorable for organic matter accumulation, so high quality source rocks could be easily formed in this area, followed by the Yacheng salient of central uplift zone. Source rocks were less developed in the northern depression zone owing to poor preservation conditions,
基金The National Natural Science Foundation of China under contract No.41776027the National Basic Research Program of China under contract Nos 2015CB954004 and 2009CB421208the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCW1808
文摘Using the fuzzy cluster analysis and the temperature-salinity(T-S) similarity number analysis of cruise conductivity-temperature-depth(CTD) data in the upper layer(0–300 m) of the northern South China Sea(NSCS), we classify the upper layer water of the NSCS into six water masses: diluted water(D), surface water(SS),the SCS subsurface water mass(U_S), the Pacific Ocean subsurface water mass(U_P), surface-subsurface mixed water(SU) and subsurface-intermediate mixed water(UI). A new stacked stereogram is used to illustrate the water mass distribution, and to examine the source and the distribution of U_P, combining with the sea surface height data and geostrophic current field. The results show that water mass U_P exists in all four seasons with the maximum range in spring and the minimum range in summer. In spring and winter, the U_P intrudes into the Luzon Strait and the southwest of Taiwan Island via the northern Luzon Strait in the form of nonlinear Rossby eddies, and forms a high temperature and high salinity zone east of the Dongsha Islands. In summer, the U_P is sporadically distributed in the study area. In autumn, the U_P is located in the upper 200 m layer east of Hainan Island.
基金Supported by the Chinese Ministry of Agriculture under the Investigation of Fishery Stocks in China Seas Program (No. 070404)the Special Project of the Social Commonwealth Research National Institute (Nos.2009TS08, 2010YD10)
文摘Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters were analyzed using FiSAT II software. Five species had isometric growth, two species had negative allometric growth, and one species had positive allometric growth. Overall, the exploitation rates of the eight species were lower in 2006 2007 than in 1997-1999: for four species (Saurida tumbil, Saurida undosquamis, Argyrosomus macrocephalus, and Nemipterus virgatus) it was lower in 2006-2007 than in 1997 1999, for two species (Parargyrops edita and Trichiurus haumela) it remained the same, and for the other two species (Trachurus japonicus and Decapterus maruadsi) it was higher in 2006~007 than in 1997-1999. The exploitation rates might have declined because of the decline in fishing intensity caused by high crude oil prices. The optimum exploitation rate, estimated using Beverton-Holt dynamic pool models, indicated that although fishes in the Beibu Gulf could sustain high exploitation rates, the under-size fishes at first capture resulted in low yields. To increase the yield per recruitment, it is more effective to increase the size at first capture than to control fishing effort.
基金supported by the National 973 Basic Research Program (Grant No. 2009CB219502)National Natural Science Foundation of China (Grant No. 41072084)
文摘BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.
基金Supported by the National Natural Science Foundation of China(Nos.41306127,41276156)supported by SHOU International Center for Marine Studies and Shanghai 1000 Talent Program
文摘The mitre squid(U roteuthis chinensis) and the swordtip squid( U. edulis) are Indo-Pacific cephalopod species that are abundant in the western Pacific Ocean. They are currently exploited in the East and South China Seas and make up a significant portion of the Chinese neritic squid catch. Beaks, the feeding organs of squid, are important for individual size and biomass estimation because of their high resistance to degradation in predator stomachs and consistent dimensions. In this study, 104 U. chinensis and 143 U. edulis individuals were sampled from northern South China Sea with mantle length from 70 to 260 mm and 96 to 284 mm, respectively. The results indicated that morphological beak values were greater for U. edulis, compared to U. chinensis, for upper hood length(UHL), upper crest length(UCL), upper lateral wall length(ULWL), lower crest length(LCL), and lower lateral wall length(LLWL). According to principal component analysis, UHL/ML, UCL/ML, ULWL/ML, LCL/ML, LLWL/ML and LWL/ML could represent the characteristics of beaks for U. chinensis, while UHL/ML, UCL/ML, ULWL/ML, LHL/ML, LCL/ML and LLWL/ML could represent it for U. edulis. According to Akaike's information criterion(AIC) values, a power function was the most suitable model for U. chinensis, while a linear function was the most suitable model for U. edulis. The beak variable-mantle length ratio(beak variable/mantle length) declined with the increasing of mantle length and declined sharply at the early stage of growth in both beaks and species. The ratio changed quickly after achieving the mantle length of 140 mm for U. chinensis, while the ratio changed quickly after 170 mm for U. edulis. Beaks in both species experienced sharper changes through maturity stage I to II than other maturity stages. This study gives us basic beak morphology information for U. chinensis and U. edulis in the East and South China Seas. Geometric morphological methods combined with dietary analysis should be used in the future.
基金The National Basic Research Program(973 Program)of China under contract No.2009CB219401Science and Technology Program of Guangzhou under contract No.201505041038084+2 种基金the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)under contract No.PLN1401the Key Laboratory of Gas Hydrate,Ministry of Land and Resources under contract No.SHW(2014)-DX-01the State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology under contract No.NRE1302
文摘The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.
基金supported by the National Natural Science Foundation of China (grant no. 41272218)the Fundamental Research Funds for the Central Universitiesthe State Key Program of the National Natural Science of China (grant no. 2011ZX05023-003)
文摘Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respectively. A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene, in which the pre-Paleocene data dominate. The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin. Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones, and have REE features of crustal zircon. Zircon U-Pb dates of 2518-2481 Ma, 1933- 1724 Ma, and 1094-1040 Ma from the SCSV1 volcanics, and 2810-2718 Ma, 2458-2421 Ma, and 1850-993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea, well comparable with age records dated from the Cathaysia block. The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia, respectively. The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2. The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events. Their age signatures from the SCSV1 cover 266.5±3.5 Ma, 241.1±6.0 Ma, 184.0±4.2 Ma, 160.9±4.2 Ma and 102.8±2.6 Ma, and from the SCSV2 are 244±15 Ma, 158.1±3.5 Ma, 141±13 Ma and 96.3±2.1 Ma. Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement, Caledonian orogeny, and Indosinian orogeny to Yanshannian magmatism. This process can be well comparable with the tectonic evolution of South China, largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.
基金The National Natural Science Foundation of China under contract No.4106035the Project of Geological and Geophysical Maps in China's Seas and Its Adjacent Regions under contract No.GZH200900504
文摘The northern continental margin of the South China Sea (SCS) is located within the tectonic system of Southeast Asia, an area with a great deal of tectonic migration due to the regional tectonic movements. The available geological and geophysical data of the area are comprehensively analyzed in order to demonstrate the typical migration patterns of the Cenozoic tectonics in the northern SCS caused by the episodes of the Cenozoic tectonic movement. Furthermore, the lateral variation characteristics of the strata and the differ- ent evolution patterns of the main basins' features are assessed. It primarily focus on: (1) the Cenozoic epi- sodic rifting from north to south in the continental margin of the northern SCS; (2) the rifting and depression time of the main basins progressively become younger as one goes from north to south, signifying that the migration of both the tectonics and the sediments within the northern SCS travelled from north to south during the Cenozoic; and (3) the lateral tectonic migration on the direction of EW is not regular in total, but in some local areas the trending of the tectonic migration is from west to east. The analysis of the tectonic migration features of the northern SCS, in combination with the regional tectonic evolution background, indicates that the observed remote lagging effect, resulted from the India-Eurasia plate collision, is the main dynamic mechanism involved in the tectonic migration within the northern SCS. The tectonic migration has significant influence on both the organization of petroleum deposits and on the hydrocarbon accumulation within the basins in the northern SCS; comprehensive understanding of this dynamic system is of great reference value in predicting the hydrocarbon accumulation and has the potential to have an enormous impact in discovering new deep reservoirs for the future oil-gas exploration.
基金The National Basic Research Program of China under contract No.011 CB403503the Project "908" of China under contract No. 908-01-BC10+2 种基金the National Natural Science Foundation of China under contract Nos 41176028 and 41176024Guangdong Province Natural Science Foundation of China under contract No.S2011010001001the Knowledge Innovation Program of the Chinese Academy of Sciences of China under contract No.SQ200809
文摘In situ observations, satellite data, and the output from an eddy-resolving ocean circulation model were used to study the generations and propagations of an anticyclonic eddy in the northern South China Sea (NSCS) during the winter of 2009-2010. In the NSCS, the anticyclonic eddy firstly appeared to the west of the Luzon Strait, migrated generally along the continental slope and dissipated around the Xisha Archipela- go. The evolution of the warm eddy contains three phases: development, maturation, and decay. The eddy mainly stayed near 119.7°E in December and then gradually moved to 118.7°E until January 15, when its intensity, as indicated by the thermocline temperature and salinity anomalies, increased significantly, re- flecting the growth of the eddy. The eddy reached its peak on January 15 and persisted until February 23. During this period, the eddy propagated westward to 116.4°E. After, the warm eddy weakened significantly and dissipated finally near the Xisha Archipelago.