Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed ...Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.展开更多
The continuous dependence of bounded Φ-variation solutions on parameters for Kurzweil equations are established by using the functions of bounded Φ- variation that were introduced by Musielak-Orlice. These results a...The continuous dependence of bounded Φ-variation solutions on parameters for Kurzweil equations are established by using the functions of bounded Φ- variation that were introduced by Musielak-Orlice. These results are essential generalizations of continuous dependence of bounded variation solutions on parameters for Kurzweil equations.展开更多
基金supported by the National Natural Science Foundation of China(41304022,41174026,41104047)the National 973 Foundation(61322201,2013CB733303)+1 种基金the Key laboratory Foundation of Geo-space Environment and Geodesy of the Ministry of Education(13-01-08)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.
基金The NSF (10271095) of China and NWNU-KJCXGC-212.
文摘The continuous dependence of bounded Φ-variation solutions on parameters for Kurzweil equations are established by using the functions of bounded Φ- variation that were introduced by Musielak-Orlice. These results are essential generalizations of continuous dependence of bounded variation solutions on parameters for Kurzweil equations.