E E. Browder and W. V. Petryshyn defined the topological degree for A- proper mappings and then W. V. Petryshyn studied a class of A-proper mappings, namely, P1-compact mappings and obtained a number of important fixe...E E. Browder and W. V. Petryshyn defined the topological degree for A- proper mappings and then W. V. Petryshyn studied a class of A-proper mappings, namely, P1-compact mappings and obtained a number of important fixed point theorems by virtue of the topological degree theory. In this paper, following W. V. Petryshyn, we continue to study P1-compact mappings and investigate the boundary condition, under which many new fixed point theorems of P1-compact mappings are obtained. On the other hand, this class of A-proper mappings with the boundedness property includes completely continuous operators and so, certain interesting new fixed point theorems for completely continuous operators are obtained immediately. As a result of it, our results generalize several famous theorems such as Leray-Schauder's theorem, Rothe's theorem, Altman's theorem, Petryshyn's theorem, etc.展开更多
The existence of solutions of a Sturm Liouville boundary value problem(BVP) for u″+g(u)=p(t,u,u′)(0≤t≤1) is studied by using a continuation theorem based on the topological degree theory. Under the condition that...The existence of solutions of a Sturm Liouville boundary value problem(BVP) for u″+g(u)=p(t,u,u′)(0≤t≤1) is studied by using a continuation theorem based on the topological degree theory. Under the condition that g grows superlinearly and p grows with respect to u and u′ linearly at most, the boundary value problem has an infinitude of solutions.展开更多
基金Supported in part by Education Ministry,Anhui Province,China(No:2003kj047zd)
文摘E E. Browder and W. V. Petryshyn defined the topological degree for A- proper mappings and then W. V. Petryshyn studied a class of A-proper mappings, namely, P1-compact mappings and obtained a number of important fixed point theorems by virtue of the topological degree theory. In this paper, following W. V. Petryshyn, we continue to study P1-compact mappings and investigate the boundary condition, under which many new fixed point theorems of P1-compact mappings are obtained. On the other hand, this class of A-proper mappings with the boundedness property includes completely continuous operators and so, certain interesting new fixed point theorems for completely continuous operators are obtained immediately. As a result of it, our results generalize several famous theorems such as Leray-Schauder's theorem, Rothe's theorem, Altman's theorem, Petryshyn's theorem, etc.
文摘The existence of solutions of a Sturm Liouville boundary value problem(BVP) for u″+g(u)=p(t,u,u′)(0≤t≤1) is studied by using a continuation theorem based on the topological degree theory. Under the condition that g grows superlinearly and p grows with respect to u and u′ linearly at most, the boundary value problem has an infinitude of solutions.