Tangent bifurcation is a special bifurcation in nonlinear dynamic systems. The investigation of the mechanism of the tangent bifurcation in current mode controlled boost converters operating in continuous conduction m...Tangent bifurcation is a special bifurcation in nonlinear dynamic systems. The investigation of the mechanism of the tangent bifurcation in current mode controlled boost converters operating in continuous conduction mode (CCM) is performed. The one-dimensional discrete iterative map of the boost converter is derived. Based on the tangent bifurcation theorem, the conditions of producing the tangent bifurcation in CCM boost converters are deduced mathematically. The mechanism of the tangent bifurcation in CCM boost is exposed from the viewpoint of nonlinear dynamic systems. The tangent bifurcation in the boost converter is verified by numerical simulations such as discrete iterative maps, bifurcation map and Lyapunov exponent. The simulation results are in agreement with the theoretical analysis, thus validating the correctness of the theory.展开更多
为研究减小单电感双输出(single-inductor dual-output,SIDO)Buck变换器输出支路间交叉影响的控制方法,该文以工作于电感电流连续导电模式(continue conduction mode,CCM)的SIDO Buck变换器为研究对象,描述其工作原理和开关状态,推导出...为研究减小单电感双输出(single-inductor dual-output,SIDO)Buck变换器输出支路间交叉影响的控制方法,该文以工作于电感电流连续导电模式(continue conduction mode,CCM)的SIDO Buck变换器为研究对象,描述其工作原理和开关状态,推导出状态空间平均模型,并建立了SIDO CCM Buck变换器的功率级小信号模型。在此基础上,提出电容电流–电容电压纹波控制(capacitor current and capacitor voltage ripple controlled,CCVR) SIDO CCM Buck变换器,对其控制原理进行阐述,并建立了小信号模型。进一步地,分析了变换器输出支路间的交叉影响。结果表明:相比传统峰值电流型控制(peak current mode controlled,PCM) SIDO CCM Buck变换器,CCVR SIDO CCM Buck变换器可有效减小输出支路间的交叉影响。最后,由设计的CCVR SIDO CCM Buck变换器实验电路,验证了理论分析的正确性。展开更多
采用UC3843电流型PWM控制芯片设计了一种连续电流模式(Continuous Current Mode,简称CCM)的Boost变换器。建立了Boost变换器CCM电路的数学模型,推导了其工作条件,并利用Multisim仿真软件进行电路仿真,验证了设计电路的可行性。试验结果...采用UC3843电流型PWM控制芯片设计了一种连续电流模式(Continuous Current Mode,简称CCM)的Boost变换器。建立了Boost变换器CCM电路的数学模型,推导了其工作条件,并利用Multisim仿真软件进行电路仿真,验证了设计电路的可行性。试验结果显示,该电路能够很好地满足输出性能的设计要求。展开更多
According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are construc...According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.展开更多
The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microele...The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.展开更多
文摘Tangent bifurcation is a special bifurcation in nonlinear dynamic systems. The investigation of the mechanism of the tangent bifurcation in current mode controlled boost converters operating in continuous conduction mode (CCM) is performed. The one-dimensional discrete iterative map of the boost converter is derived. Based on the tangent bifurcation theorem, the conditions of producing the tangent bifurcation in CCM boost converters are deduced mathematically. The mechanism of the tangent bifurcation in CCM boost is exposed from the viewpoint of nonlinear dynamic systems. The tangent bifurcation in the boost converter is verified by numerical simulations such as discrete iterative maps, bifurcation map and Lyapunov exponent. The simulation results are in agreement with the theoretical analysis, thus validating the correctness of the theory.
文摘为研究减小单电感双输出(single-inductor dual-output,SIDO)Buck变换器输出支路间交叉影响的控制方法,该文以工作于电感电流连续导电模式(continue conduction mode,CCM)的SIDO Buck变换器为研究对象,描述其工作原理和开关状态,推导出状态空间平均模型,并建立了SIDO CCM Buck变换器的功率级小信号模型。在此基础上,提出电容电流–电容电压纹波控制(capacitor current and capacitor voltage ripple controlled,CCVR) SIDO CCM Buck变换器,对其控制原理进行阐述,并建立了小信号模型。进一步地,分析了变换器输出支路间的交叉影响。结果表明:相比传统峰值电流型控制(peak current mode controlled,PCM) SIDO CCM Buck变换器,CCVR SIDO CCM Buck变换器可有效减小输出支路间的交叉影响。最后,由设计的CCVR SIDO CCM Buck变换器实验电路,验证了理论分析的正确性。
文摘采用UC3843电流型PWM控制芯片设计了一种连续电流模式(Continuous Current Mode,简称CCM)的Boost变换器。建立了Boost变换器CCM电路的数学模型,推导了其工作条件,并利用Multisim仿真软件进行电路仿真,验证了设计电路的可行性。试验结果显示,该电路能够很好地满足输出性能的设计要求。
基金Sponsored by the National Natural Sciences Foundation of China(Grant No.61201227)
文摘According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.
文摘The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.