Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases,e.g.,Corona Virus Disease 2019(COVID-19).Occupancy-aided ventilation methods can effectively improve...Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases,e.g.,Corona Virus Disease 2019(COVID-19).Occupancy-aided ventilation methods can effectively improve the airborne infection risk control performance with a sacrifice of decreasing working productivity because of the reduced occupancy.This study evaluates the effectiveness of two occupancy-aided ventilation methods,i.e.,the continuously reduced occupancy method and the intermittently reduced occupancy method.The continuously reduced occupancy method is determined by the steady equation of the mass conservation law of the indoor contaminant,and the intermittently reduced occupancy method is determined by a genetic algorithm-based optimization.A two-scenarios-based evaluation framework is developed,i.e.,one with targeted airborne infection risk control performance(indicated by the mean rebreathed fraction)and the other with targeted working productivity(indicated by the accumulated occupancy).The results show that the improvement in the airborne infection risk control performance linearly and quadratically increases with the reduction in the working productivity for the continuously reduced occupancy method and the intermittently reduced occupancy method respectively.At a given targeted airborne infection risk control performance,the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the working productivity by up to 92%.At a given targeted working productivity,the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the airborne infection risk control performance by up to 38%.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.xzy012022078)the Top Young Talent Programme of Xi’an Jiaotong University(No.011900/71211201030703).
文摘Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases,e.g.,Corona Virus Disease 2019(COVID-19).Occupancy-aided ventilation methods can effectively improve the airborne infection risk control performance with a sacrifice of decreasing working productivity because of the reduced occupancy.This study evaluates the effectiveness of two occupancy-aided ventilation methods,i.e.,the continuously reduced occupancy method and the intermittently reduced occupancy method.The continuously reduced occupancy method is determined by the steady equation of the mass conservation law of the indoor contaminant,and the intermittently reduced occupancy method is determined by a genetic algorithm-based optimization.A two-scenarios-based evaluation framework is developed,i.e.,one with targeted airborne infection risk control performance(indicated by the mean rebreathed fraction)and the other with targeted working productivity(indicated by the accumulated occupancy).The results show that the improvement in the airborne infection risk control performance linearly and quadratically increases with the reduction in the working productivity for the continuously reduced occupancy method and the intermittently reduced occupancy method respectively.At a given targeted airborne infection risk control performance,the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the working productivity by up to 92%.At a given targeted working productivity,the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the airborne infection risk control performance by up to 38%.